4,683 research outputs found
Hunting for Isocurvature Modes in the CMB non-Gaussianities
We investigate new shapes of local primordial non-Gaussianities in the CMB.
Allowing for a primordial isocurvature mode along with the main adiabatic one,
the angular bispectrum is in general a superposition of six distinct shapes:
the usual adiabatic term, a purely isocurvature component and four additional
components that arise from correlations between the adiabatic and isocurvature
modes. We present a class of early Universe models in which various hierarchies
between these six components can be obtained, while satisfying the present
upper bound on the isocurvature fraction in the power spectrum. Remarkably,
even with this constraint, detectable non-Gaussianity could be produced by
isocurvature modes. We finally discuss the prospects of detecting these new
shapes with the Planck satellite.Comment: 9 pages, 2 figure
Bulk gravitons from a cosmological brane
We investigate the emission of gravitons by a cosmological brane into an Anti
de Sitter five-dimensional bulk spacetime. We focus on the distribution of
gravitons in the bulk and the associated production of `dark radiation' in this
process. In order to evaluate precisely the amount of dark radiation in the
late low-energy regime, corresponding to standard cosmology, we study
numerically the emission, propagation and bouncing off the brane of bulk
gravitons.Comment: 27 pages, 5 figures, minor corrections. Final versio
Scalar Kaluza-Klein modes in a multiply warped braneworld
The Kaluza-Klein (KK) modes of a massive scalar field on a 3-brane embedded
in six dimensional multiply warped spacetime are determined. Due to the
presence of warping along both the extra dimensions the KK mass spectrum splits
into two closely spaced branches which is a distinct feature of this model
compared to the five dimensional Randall-Sundrum model. This new cluster of the
KK mode spectrum is expected to have interesting phenomenological implications
for the upcoming collider experiments. Such a scenario may also be extended for
even larger number of orbifolded extra dimensions.Comment: 10 pages, Revte
Can transvaginal ultrasound detect endometrial disease among asymptomatic postmenopausal patients?
Transvaginal ultrasound should not replace endometrial biopsy for detection of endometrial disease among asymptomatic postmenopausal patients. Endometrial biopsy has been considered a standard for the clinical diagnosis of endometrial disease among asymptomatic patients, but it is invasive, may be uncomfortable, and may not be able to be performed for some patients with cervical stenosis. Ultrasound evaluation is less invasive and more comfortable and can be performed for patients with cervical stenosis. The positive predictive value of ultrasound is not adequate to allow it to replace endometrial biopsy for screening of asymptomatic women (strength of recommendation: B, based on cohort studies)
Massive scalar states localized on a de Sitter brane
We consider a brane scenario with a massive scalar field in the
five-dimensional bulk. We study the scalar states that are localized on the
brane, which is assumed to be de Sitter. These localized scalar modes are
massive in general, their effective four-dimensional mass depending on the mass
of the five-dimensional scalar field, on the Hubble parameter in the brane and
on the coupling between the brane tension and the bulk scalar field. We then
introduce a purely four-dimensional approach based on an effective potential
for the projection of the scalar field in the brane, and discuss its regime of
validity. Finally, we explore the quasi-localized scalar states, which have a
non-zero width that quantifies their probability of tunneling from the brane
into the bulk.Comment: 14 pages; 5 figure
Gauss-Bonnet brane gravity with a confining potential
A brane scenario is envisaged in which the -dimensional bulk is endowed
with a Gauss-Bonnet term and localization of matter on the brane is achieved by
means of a confining potential. The resulting Friedmann equations on the brane
are modified by various extra terms that may be interpreted as the X-matter,
providing a possible phenomenological explanation for the accelerated expansion
of the universe. The age of the universe in this scenario is studied and shown
to be consistent with the present observational data.Comment: 14 pages, 4 figures, to appear in PR
Cosmology in a brane-universe
This contribution presents the cosmological models with extra dimensions that
have been recently elaborated, which assume that ordinary matter is confined on
a surface, called brane, embedded in a higher dimensional spacetime.Comment: 12 pages; Invited review talk at the JENAM 2002 workshop on "The
cosmology of extra dimensions and varying fundamental constants", Porto,
Portugal, September 200
Bulk inflaton shadows of vacuum gravity
We introduce a -dimensional vacuum description of five-dimensional
bulk inflaton models with exponential potentials that makes analysis of
cosmological perturbations simple and transparent. We show that various
solutions, including the power-law inflation model recently discovered by
Koyama and Takahashi, are generated from known -dimensional vacuum
solutions of pure gravity. We derive master equations for all types of
perturbations, and each of them becomes a second order differential equation
for one master variable supplemented by simple boundary conditions on the
brane. One exception is the case for massive modes of scalar perturbations. In
this case, there are two independent degrees of freedom, and in general it is
difficult to disentangle them into two separate sectors.Comment: 22 pages, 4 figures, revtex; v2: references adde
Models for the Brane-Bulk Interaction: Toward Understanding Braneworld Cosmological Perturbation
Using some simple toy models, we explore the nature of the brane-bulk
interaction for cosmological models with a large extra dimension. We are in
particular interested in understanding the role of the bulk gravitons, which
from the point of view of an observer on the brane will appear to generate
dissipation and nonlocality, effects which cannot be incorporated into an
effective (3+1)-dimensional Lagrangian field theoretic description. We
explicitly work out the dynamics of several discrete systems consisting of a
finite number of degrees of freedom on the boundary coupled to a
(1+1)-dimensional field theory subject to a variety of wave equations. Systems
both with and without time translation invariance are considered and moving
boundaries are discussed as well. The models considered contain all the
qualitative feature of quantized linearized cosmological perturbations for a
Randall-Sundrum universe having an arbitrary expansion history, with the sole
exception of gravitational gauge invariance, which will be treated in a later
paper.Comment: 47 pages, RevTeX (or Latex, etc) with 5 eps figure
(1+3) Covariant Dynamics of Scalar Perturbations in Braneworlds
We discuss the dynamics of linear, scalar perturbations in an almost
Friedmann-Robertson-Walker braneworld cosmology of Randall-Sundrum type II
using the 1+3 covariant approach. We derive a complete set of frame-independent
equations for the total matter variables, and a partial set of equations for
the non-local variables which arise from the projection of the Weyl tensor in
the bulk. The latter equations are incomplete since there is no propagation
equation for the non-local anisotropic stress. We supplement the equations for
the total matter variables with equations for the independent constituents in a
cold dark matter cosmology, and provide solutions in the high and low-energy
radiation-dominated phase under the assumption that the non-local anisotropic
stress vanishes. These solutions reveal the existence of new modes arising from
the two additional non-local degrees of freedom. Our solutions should prove
useful in setting up initial conditions for numerical codes aimed at exploring
the effect of braneworld corrections on the cosmic microwave background (CMB)
power spectrum. As a first step in this direction, we derive the covariant form
of the line of sight solution for the CMB temperature anisotropies in
braneworld cosmologies, and discuss possible mechanisms by which braneworld
effects may remain in the low-energy universe.Comment: 22 pages replaced with additional references and minor corrections in
Revtex4, and accepted for publication in Phys. Rev.
- …
