34 research outputs found

    Supergravity Inflation on the Brane

    Get PDF
    We study N=1 Supergravity inflation in the context of the braneworld scenario. Particular attention is paid to the problem of the onset of inflation at sub-Planckian field values and the ensued inflationary observables. We find that the so-called η\eta-problem encountered in supergravity inspired inflationary models can be solved in the context of the braneworld scenario, for some range of the parameters involved. Furthermore, we obtain an upper bound on the scale of the fifth dimension, M_5 \lsim 10^{-3} M_P, in case the inflationary potential is quadratic in the inflaton field, ϕ\phi. If the inflationary potential is cubic in ϕ\phi, consistency with observational data requires that M5≃9.2×10−4MPM_5 \simeq 9.2 \times 10^{-4} M_P.Comment: 6 pages, 1 figure, to appear in Phys. Rev.

    Geometry and cosmological perturbations in the bulk inflaton model

    Full text link
    We consider a braneworld inflation model driven by the dynamics of a scalar field living in the 5-dimensional bulk, the so-called ``bulk inflaton model'', and investigate the geometry in the bulk and large scale cosmological perturbations on the brane. The bulk gravitational effects on the brane are described by a projection of the 5-dimensional Weyl tensor, which we denote by EΌΜE_{\mu\nu}. Focusing on a tachionic potential model, we take a perturbative approach in the anti-de Sitter (AdS5_5) background with a single de Sitter brane. We first formulate the evolution equations for EΌΜE_{\mu\nu} in the bulk. Next, applying them to the case of a spatially homogeneous brane, we obtain two different integral expressions for EΌΜE_{\mu\nu}. One of them reduces to the expression obtained previously when evaluated on the brane. The other is a new expression that may be useful for analyzing the bulk geometry. Then we consider superhorizon scale cosmological perturbations and evaluate the bulk effects onto the brane. In the limit H2ℓ2â‰Ș1H^2\ell^2\ll1, where HH is the Hubble parameter on the brane and ℓ\ell is the bulk curvature radius, we find that the effective theory on the brane is identical to the 4-dimensional Einstein-scalar theory with a simple rescaling of the potential even under the presence of inhomogeneities. % atleast on super-Hubble horizon scales. In particular, it is found that the anticipated non-trivial bulk effect due to the spatially anisotropic part of EΌΜE_{\mu\nu} may appear only at %second order in the low energy expansion, i.e., at O(H4ℓ4)O(H^4\ell^4).Comment: 21 pages including 6 pages for several appendixes, no figure

    Modified Gravity on the Brane and Dark Energy

    Get PDF
    We analyze the dynamics of an AdS5 braneworld with matter fields when gravity is allowed to deviate from the Einstein form on the brane. We consider exact 5-dimensional warped solutions which are associated with conformal bulk fields of weight -4 and describe on the brane the following three dynamics: those of inhomogeneous dust, of generalized dark radiation, and of homogeneous polytropic dark energy. We show that, with modified gravity on the brane, the existence of such dynamical geometries requires the presence of non-conformal matter fields confined to the brane.Comment: Revised version published in Gen. Rel. Grav. Typos corrected, updated reference and some remarks added for clarity. 11 pages, latex, no figure

    N=1 Supergravity Chaotic Inflation in the Braneworld Scenario

    Full text link
    We study a N=1 Supergravity chaotic inflationary model, in the context of the braneworld scenario. It is shown that successful inflation and reheating consistent with phenomenological constraints can be achieved via the new terms in the Friedmann equation arising from brane physics. Interestingly, the model satisfies observational bounds with sub-Planckian field values, implying that chaotic inflation on the brane is free from the well known difficulties associated with the presence of higher order non-renormalizable terms in the superpotential. A bound on the mass scale of the fifth dimension, M_5 \gsim 1.3 \times 10^{-6} M_P, is obtained from the requirement that the reheating temperature be higher than the temperature of the electroweak phase transition.Comment: 5 pages, 1 Table, Revtex

    WMAP and Supergravity Inflationary Models

    Full text link
    We study a class of N=1 Supergravity inflationary models in which the evolution of the inflaton dynamics is controlled by a single power in the inflaton field at the point where the observed density fluctuations are produced, in the context of the braneworld scenario, in light of WMAP results. In particular, we find that the bounds on the spectral index and its running constrain the parameter space both for models where the inflationary potential is dominated by a quadratic term and by a cubic term in the inflaton field. We also find that αs>0\alpha_s>0 is required for the quadratic model whereas αs<0\alpha_s<0 for the cubic model. Moreover, we have determined an upper bound on the five-dimensional Planck scale, M_5 \lsim 0.019 M, for the quadratic model. On the other hand, a running spectral index with ns>1n_s>1 on large scales and ns<1n_s<1 on small scales is not possible in either case.Comment: 7 pages, 4 eps figures, references corrected, version to appear in Phys. Rev.

    Amphi-COUP-TF, a nuclear orphan receptor of the lancelet Branchiostoma floridae, is implicated in retinoic acid signaling pathways.

    No full text
    International audienceIn vertebrates, the orphan nuclear receptors of the COUP-TF group function as negative transcriptionalregulators that inhibit the hormonal induction of targetgenes mediated by classical members of the nuclear hor-mone superfamily, such as the retinoic acid receptors(RARs) or the thyroid hormone receptors (TRs). To in-vestigate the evolutionary conservation of the roles of COUP-TF receptors as negative regulators in the retinoidand thyroid hormone pathways, we have characterizedAmphiCOUP-TF, the homologue of COUP-TFI andCOUP-TFII, in the chordate amphioxus ( Branchiostoma floridae ), the closest living invertebrate relative of thevertebrates. Electrophoretic mobility shift assays(EMSA) showed that AmphiCOUP-TF binds to a widevariety of response elements, as do its vertebrate homo-logues. Furthermore, AmphiCOUP-TF is a transcription-al repressor that strongly inhibits retinoic acid-mediatedtransactivation. In situ hybridizations revealed expres-sion of AmphiCOUP-TF in the nerve cord of late larvae,in a region corresponding to hindbrain and probably an-terior spinal cord. Although the amphioxus nerve cordappears unsegmented at the gross anatomical level, thispattern reflects segmentation at the cellular level withstripes of expressing cells occurring adjacent to the endsand the centers of each myotomal segment, which mayinclude visceral motor neurons and somatic motor neu-rons respectively, among other cells. A comparison of the expression pattern of AmphiCOUP-TF with those of its vertebrate homologues, suggests that the roles of COUP-TF in patterning of the nerve cord evolved priorto the split between the amphioxus and vertebrate lineag-es. Furthermore, in vitro data also suggest that Amphi-COUP-TF acts as a negative regulator of signalling byother nuclear receptors such as RAR, TR or ER
    corecore