15 research outputs found

    Sensitivity of Antarctic Circumpolar Current Transport and Eddy Activity to Wind Patterns in the Southern Ocean

    No full text
    The Southern Hemisphere westerly winds have intensified in recent decades associated with a positive trend in the southern annular mode (SAM). However, the response of the Antarctic Circumpolar Current (ACC) transport and eddy field to wind forcing remains a topic of debate. This study uses global eddy-permitting ocean circulation models driven with both idealized and realistic wind forcing to explore the response to interannual wind strengthening. The response of the barotropic and baroclinic transports and eddy field of the ACC is found to depend on the spatial pattern of the changes in wind forcing. In isolation, an enhancement of the westerlies over the ACC belt leads to an increase of both barotropic and baroclinic transport within the ACC envelope, with lagged enhancement of the eddy kinetic energy (EKE). In contrast, an increase in wind forcing near Antarctica drives a largely barotropic change in transport along closed f/H contours (“free mode”), with little change in eddy activity. Under realistic forcing, the interplay of the SAM and the El Niño–Southern Oscillation (ENSO) influences the spatial distribution of the wind anomalies, in particular the partition between changes in the wind stress over the ACC and along f/H contours. This study finds that the occurrence of a negative or positive ENSO during a positive SAM can cancel or double the wind anomalies near Antarctica, altering the response of the ACC and its eddy field. While a negative ENSO and positive SAM favors an increase in EKE, a positive ENSO and positive SAM lead to barotropic transport changes and no eddy response

    Eddying vs. laminar ocean circulation models and their applications

    No full text
    International audienceMesoscale eddies are ubiquitous and very energetic features of the ocean circulation. They are represented in the high resolution models used for ocean forecasting , but not yet in today's laminar, coarse-resolution ocean components of models of the climate system. However, advances in high performance computing are likely to change this in a near future, as the next decade should see the use of ed-dying models to become more and more frequent in the broader context of the Earth system modelling. This lecture discusses mesoscale eddies in models of different resolution. The course is organised as follows. Section 1 introduces the notion of mesoscale eddies by an illustration of the ubiquity of oceanic eddies from satellite observations. Then, it provides a definition of ocean mesoscale eddies by analogy with the atmospheric synoptic eddies. The main impacts of ocean mesoscale eddies on the general circulation are recalled. Section 2 discusses some ocean model fundamentals that link primitive equations with resolution, parame-terisation and numerics. The separation between resolved and unresolved scales that results from the choice of grid resolution is discussed, a definition of eddying and laminar resolution models is provided, and the notion of subgridscale parame-terization is illustrated with the example of the mesoscale eddies. Section 3 illustrates the tight link that exists between resolution and numerics. Examples are shown where the use of advanced numerical schemes improves model solutions in a more drastic way than increases in resolution. Section 4 uses the DRAKKAR hierarchy of global ocean circulation models (whose resolutions vary between 2° and 1/12°) to illustrate how the changes in resolution impact the realism of model simulations, in terms of mean state and variability. The conclusion summarizes the major items discussed during the class

    The fate of carbon and nutrients exported out of the Southern Ocean, links to model results

    Get PDF
    4-year means of 2D fields CO2 flux, nanophytoplankton NPP, diatom NPP, carbon export, and of 3D fields DIN, DIC, DSi, DFe, nanophytoplankton carbon biomass, diatom carbon biomass, detritus carbon. Six 200-year simulations as described in Table 1 in the paper: CTRL NOBIO NOBIOGASEX CTRL-diseq NOBIO-diseq NOBIOGASEX-diseq Filenames start with above mentioned simulation names and then "diag2" for 2d fields and "TRACdiag" for 3d tracer fields

    Regional Impacts of the Westerly Winds on Southern Ocean Mode and Intermediate Water Subduction

    Get PDF
    Subduction processes in the Southern Ocean transfer oxygen, heat, and anthropogenic carbon into the ocean interior. The future response of upper-ocean subduction, in the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) classes, is dependent on the evolution of the combined surface buoyancy forcing and overlying westerly wind stress. Here, the recently observed pattern of a poleward intensification of the westerly winds is divided into its shift and increase components. SAMW and AAIW formation occurs in regional "hot spots'' in deep mixed layer zones, primarily in the southeast Indian and Pacific. It is found that the mixed layer depth responds differently to wind stress perturbations across these regional formation zones. An increase only in the westerly winds in the Indian sector steepens isopycnals and increases the local circulation, driving deeper mixed layers and increased subduction. Conversely, in the same region, a poleward shift and poleward intensification of the westerly winds reduces heat loss and increases freshwater input, thus decreasing the mixed layer depth and consequently the associated SAMW and AAIW subduction. In the Pacific sector, all wind stress perturbations lead to increases in heat loss and decreases in freshwater input, resulting in a net increase in SAMW and AAIW subduction. Overall, the poleward shift in the westerly wind stress dominates the SAMW subduction changes, rather than the increase in wind stress. The net decrease in SAMW subduction across all basins would likely decrease anthropogenic carbon sequestration; however, the net AAIW subduction changes across the Southern Ocean are overall minor

    Spatial variation in stable isotopes and fatty acid trophic markers in albacore tuna (Thunnus alalunga) from the western Indian Ocean

    Get PDF
    Albacore tuna (Thunnus alalunga) is a highly economically important species in the western Indian Ocean. However, knowledge of its ecological and nutritional characteristics, essential for proper management of the species, is lacking in the region. The trophodynamics of the Indian Ocean albacore was thus examined using known fatty acid trophic markers (FATMs) of primary producers, nutritional condition indices (NCIs) (omega-3/omega-6 ratio and total fatty acid content (TFA)), and baseline and lipid corrected stable isotope of carbon (δ13Ccorr) and nitrogen (δ15Ncorr), measured in the muscle tissue. We applied generalized additive mixed models to understand the spatiotemporal patterns and drivers of these tracers, taking into consideration several intrinsic and extrinsic variables: fish size, fishing position, month, chlorophyll-a and sea surface temperature (SST). Both chlorophyll-a and SST were significant as single explanatory variables for all tracers with SST being the best predictor for docosahexaenoic acid/eicosapentaenoic acid ratio, the omega-6 protists FATM, omega-3/omega-6 ratio and δ15Ncorr. TFA was best predicted by fish size only. The best model for δ13Ccorr for males included fishing position only while that for females included fish size, fishing position and month. Higher primary productivity, as inferred by high δ13Ccorr values and diatom contribution, nutritional condition and trophic position, as inferred by high δ15Ncorr values, were observed in albacore from the temperate southern waters than in the northern tropical regions. Relationships between environmental variables and corrected stable isotopes, FATMs confirm that ocean warming and changes in primary productivity will impact nutrient flow and energy transfer in the marine food web which may have negative nutritional outcomes for albacore. This knowledge is particularly crucial in areas where oceanographic conditions and seawater temperatures are changing at a fast rate and should also be taken into consideration by fisheries managers
    corecore