11 research outputs found

    A (not so) shallow controlled CO2 release experiment in a fault zone

    Get PDF
    The CSIRO In-Situ Laboratory Project (ISL) is located in Western Australia and has two main objectives related to monitoring leaks from a CO2 storage complex by controlled-release experiments: 1) improving the monitorability of gaseous CO2 accumulations at intermediate depth, and 2) assessing the impact of faults on CO2 migration. A first test at the In-situ Lab has evaluated the ability to monitor and detect unwanted leakage of CO2 from a storage complex in a major fault zone. The ISL consists of three instrumented wells up to 400 m deep: 1) Harvey-2 used primarily for gaseous CO2 injection, 2) ISL OB-1, a fibreglass geophysical monitoring well with behind-casing instrumentation, and 3) a shallow (27 m) groundwater well for fluid sampling. A controlled-release test injected 38 tonnes of CO2 between 336-342 m depth in February 2019, and the gas was monitored by a wide range of downhole and surface monitoring technologies. CO2 reached the ISL OB-1 monitoring well (7 m away) after approximately 1.5 days and an injection volume of 5 tonnes. Evidence of arrival was determined by distributed temperature sensing and the CO2 plume was detected also by borehole seismic after injection of as little as 7 tonnes. Observations suggest that the fault zone did not alter the CO2 migration along bedding at the scale and depth of the experiment. No vertical CO2 migration was detected beyond the perforated injection interval; no notable changes were observed in groundwater quality or soil gas chemistry during and post injection. The early detection of significantly less than 38 tonnes of CO2 injected into the shallow subsurface demonstrates rapid and sensitive monitorability of potential leaks in the overburden of a commercial-scale storage project, prior to reaching shallow groundwater, soil zones or the atmosphere. The ISL is a unique and enduring research facility at which monitoring technologies will be further developed and tested for increasing public and regulator confidence in the ability to detect potential CO2 leakage at shallow to intermediate depth

    Lessons learned : the first in-situ laboratory fault injection test

    Get PDF
    The CSIRO In-Situ Laboratory has been a world first injection of CO2 into a large faulted zone at depth. A total of 38 tonnes of CO2 was injected into the F10 fault zone at approximately 330 m depth and the process monitored in detail. The site uses a well, Harvey-2, in SW Western Australia (the South West Hub CCS Project area). The top 400 m section of Harvey-2 was available for injection and instrumentation. An observation well, ISL OB-1 (400 m depth) was drilled 7 m to the north east of Harvey-2. ISL OB-1 well was cased with fibreglass to provide greater monitoring options. The CSIRO In-Situ Laboratory was designed to integrate existing facilities and infrastructure from the South West Hub CCS Project managed by the West Australian Department of Mines, Industry Regulation and Safety. While new equipment was deployed for this specific project, the site facilities were complemented by a range of mobile deployable equipment from the National Geosequestration Laboratory (NGL). The geology of the area investigated poses interesting challenges: a large fault (F10) is estimated to have up to 1000 m throw overall, the presence of packages of paleosols rather than a contiguous mudstone seal, and a 1500 m vertical thickness of Triassic sandstone as the potential commercial storage interval. This unique site provides abundant opportunities for testing more challenging geological environments for carbon storage than at other sites. While details of this first project are described elsewhere, lessons were learned during the development and execution of the project. A rigorous risk register was developed to manage project risk, but not all events encountered were foreseen. This paper describes some of the challenges encountered and the team's response. Relocation of the project site due to changes in landholder ownership) and other sensitivities resulted in the need for rapid replanning of activities at short notice resulting in the development of the site at Harvey-2. The relocation allowed other research questions to be addressed through new activities, such as the ability to consider a shallow/controlled release experiment in an extensive fault zone, but this replanning did cause some timing stress. The first test at the In-Situ Laboratory was reconfigured to address some of those knowledge gaps that shallow/controlled release experiments had yet to address. Novel approaches to drilling and completing the monitoring well also threw up unanticipated difficulties. Loss of containment from the wellbore also posed significant challenges, and the team's response to this unintended release of gas and water from the monitoring well at the conclusion of the field experiment will be discussed. Other challenges that we encountered, their impacts, and our response are also catalogued here (Table 1 and below) to enable broad knowledge exchange

    A controlled CO2 release experiment in a fault zone at the in-situ laboratory in Western Australia

    Get PDF
    A controlled-release test at the In-Situ Laboratory Project in Western Australia injected 38 tonnes of gaseous CO2 between 336-342 m depth in a fault zone, and the gas was monitored by a wide range of downhole and surface monitoring technologies. Injection of CO2 at this depth fills the gap between shallow release (600 m) field trials. The main objectives of the controlled-release test were to assess the monitorability of shallow CO2 accumulations, and to investigate the impacts of a fault zone on CO2 migration. CO2 arrival was detected by distributed temperature sensing at the monitoring well (7 m away) after approximately 1.5 days and an injection volume of 5 tonnes. The CO2 plume was detected also by borehole seismic and electric resistivity imaging. The early detection of significantly less than 38 tonnes of CO2 in the shallow subsurface demonstrates rapid and sensitive monitorability of potential leaks in the overburden of a commercial-scale storage project, prior to reaching shallow groundwater, soil zones or the atmosphere. Observations suggest that the fault zone did not alter the CO2 migration along bedding at the scale and depth of the test. Contrary to model predictions, no vertical CO2 migration was detected beyond the perforated injection interval. CO2 and formation water escaped to the surface through the monitoring well at the end of the experiment due to unexpected damage to the well’s fibreglass casing. The well was successfully remediated without impact to the environment and the site is ready for future experiments

    Evaluating hydrocarbon trap integrity during fault reactivation using geomechanical three-dimensional modeling: An example from the Timor Sea, Australia

    No full text
    Three-dimensional (3-D) coupled deformation and fluid-flow numerical modeling are used to simulate the response of a relatively complex set of trap-bounding faults to extensional reactivation and to investigate hydrocarbon preservation risk for structural traps in the offshore Bonaparte Basin (Laminaria High, the Timor Sea, Australian North West Shelf). The model results show that the distributions of shear strain and dilation as well as fluid flux are heterogeneous along fault planes inferring lateral variability of fault seal effectiveness. The distribution of high shear strain is seen as the main control on structural permeability and is primarily influenced by the structural architecture. Prereactivation fault size and distribution within the modeled fault population as well as fault corrugations driven by growth processes represent key elements driving the partitioning of strain and up-fault fluid flow. These factors are critical in determining oil preservation during the late reactivation phase on the Laminaria High. Testing of the model against leakage indicators defined on 3-D seismic data correlates with the numerical prediction of fault seal effectiveness and explains the complex distribution of paleo- and preserved oil columns in the study area

    Mechanism of Upfault Seepage and Seismic Expression of Hydrocarbon Discharge Sites from the Timor Sea

    No full text
    Three-dimensional coupled deformation and fluid-flow numerical modeling, charge-history analysis, and seismic imaging of inferred leakage-related geobodies are integrated to investigate the response of a complex set of Jurassic trap-bounding normal faults to extensional reactivation and to assess hydrocarbon upfault seepage on the Laminaria High (Timor Sea, Australian North West Shelf). Fluid inclusion data are consistent with the presence of paleo-oil columns below the current accumulations in the Laminaria and Corallina fields. Evidence for other partially breached (current and paleo-oil column) as well as breached (dry with paleo-oil column) closures across the region implies that active and widespread seepage took place after the time of initial oil charge. The distribution of current and paleo-oil zones, and the location of inferred hydrocarbon leakage indicators defined on 3D seismic data, correlates with the prediction of fault-seal effectiveness based on modeled strain distribution. Within the geologic framework of the Laminaria High area, this distribution suggests that when sufficient reactivation shear strain is accumulated by reservoir faults, ductile deformation might give way to brittle failure in the top seal, allowing active flow pathways to develop and upfault seepage to take place from the reservoir to thief zones or the seafloor. The observations emphasize that strain and upfault fluid-flow partitioning is constrained by prereactivation fault size, lateral fault-tip distributions, and the presence of fault jogs inherited from successive episodes of growth processes. These elements can explain the complex distribution of paleo- and preserved oil columns in the study area and further support Cenozoic tectonic activity as being the first-order control on trap breaching and hydrocarbon seepage in this region
    corecore