301 research outputs found
Visual contrast response functions in Parkinson's disease: evidence from electroretinograms, visually evoked potentials and psychophysics
Objectives: Visual contrast detection thresholds and suprathreshold contrast discrimination thresholds were compared to luminance and flash/pattern electroretinograms (ERG) and visually evoked potentials (VEP) in patients with Parkinson's disease (n=31), patients with multiple system atrophy (n=6), patients with progressive supranuclear palsy (n=6) and control patients without central nervous disease (n=33).
Methods: The stimuli were luminance modulated full-field (flash) or horizontally oriented sinewave gratings (pattern), the latter having either a low (0.5 cycles/deg) or medium (4.0 cycles/deg) spatial frequency. Stimulus contrast ranged from 10 to 80% so that contrast response functions could be derived.
Results: Contrast thresholds were higher in the patients with Parkinson's disease than in the control patients. Contrast discrimination thresholds were also somewhat elevated in patients with Parkinson's disease. Pattern ERG amplitudes were significantly reduced in patients with Parkinson's disease for the medium spatial frequency stimulus, but less for the low spatial frequency and flash stimuli.
Conclusions: Our results suggest that Parkinson’s disease impairs contrast processing in the retina. VEP amplitudes did not significantly differ between the groups for the conditions tested. Patients with progressive supranuclear palsy also showed impaired contrast perception and reduced ERG amplitudes, whereas patients with multiple system atrophy were less impaired
Fractal Conductance Fluctuations in Gold--Nanowires
A detailed analysis of magneto-conductance fluctuations of quasiballistic
gold-nanowires of various lengths is presented. We find that the variance
when analyzed for much
smaller than the correlation field varies according to with indicating that the graph of
vs. is fractal. We attribute this behavior to the existence of
long-lived states arising from chaotic trajectories trapped close to regular
classical orbits. We find that decreases with increasing length of the
wires.Comment: 5 pages, Revtex with epsf, 4 Postscript figures, final version
accepted as Phys. Rev. Let
Lattice deformation at the sub-micron scale: X-ray nanobeam measurements of elastic strain in electron shuttling devices
The lattice strain induced by metallic electrodes can impair the
functionality of advanced quantum devices operating with electron or hole
spins. Here we investigate the deformation induced by CMOS-manufactured
titanium nitride electrodes on the lattice of a buried, 10 nm-thick Si/SiGe
Quantum Well by means of nanobeam Scanning X-ray Diffraction Microscopy. We
were able to measure TiN electrode-induced local modulations of the strain
tensor components in the range of with ~60 nm lateral
resolution. We have evaluated that these strain fluctuations are reflected into
local modulations of the potential of the conduction band minimum larger than 2
meV, which is close to the orbital energy of an electrostatic quantum dot. We
observe that the sign of the strain modulations at a given depth of the quantum
well layer depends on the lateral dimensions of the electrodes. Since our work
explores the impact of device geometry on the strain-induced energy landscape,
it enables further optimization of the design of scaled CMOS-processed quantum
devices.Comment: 16 pages, 6 figure
Regulatory Model for AAL
Proceedings of: 6th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2011). Salamanca, April 6-8, 2011Abstract: In this work, authors define a set of principles that should be contained in context-aware applications (including biometric sensors) to accomplish the legal aspect in Europe and USA. Paper presents the necessity to consider legal aspect, related with pri-vacy or human rights, into the development of the incipient context based services. Clearly, context based services and Ambient Intelligence (and the most promising work area in Europe that is Ambient Assisted Living, ALL) needs a great effort in research new identification procedures.Publicad
Search for pentaquark in high statistics measurement of at CLAS
The exclusive reaction was studied in the
photon energy range between 1.6-3.8 GeV searching for evidence of the exotic
baryon . The decay to requires the assignment of
strangeness to any observed resonance. Data were collected with the CLAS
detector at the Thomas Jefferson National Accelerator Facility corresponding to
an integrated luminosity of 70 . No evidence for the
pentaquark was found. Upper limits were set on the production cross section as
function of center-of-mass angle and mass. The 95% CL upper limit on the
total cross section for a narrow resonance at 1540 MeV was found to be 0.8 nb.Comment: Submitted to Physical Review Letter
Light Vector Mesons in the Nuclear Medium
The light vector mesons (, , and ) were produced in
deuterium, carbon, titanium, and iron targets in a search for possible
in-medium modifications to the properties of the meson at normal nuclear
densities and zero temperature. The vector mesons were detected with the CEBAF
Large Acceptance Spectrometer (CLAS) via their decays to . The rare
leptonic decay was chosen to reduce final-state interactions. A combinatorial
background was subtracted from the invariant mass spectra using a
well-established event-mixing technique. The meson mass spectrum was
extracted after the and signals were removed in a nearly
model-independent way. Comparisons were made between the mass spectra
from the heavy targets () with the mass spectrum extracted from the
deuterium target. With respect to the -meson mass, we obtain a small
shift compatible with zero. Also, we measure widths consistent with standard
nuclear many-body effects such as collisional broadening and Fermi motion.Comment: 15 pages, 18 figures, 3 table
Electroproduction of mesons at GeV measured with the CLAS spectrometer
Electroproduction of exclusive vector mesons has been studied with the
CLAS detector in the kinematical range GeV,
GeV, and GeV. The
scaling exponent for the total cross section as was
determined to be . The slope of the four-momentum transfer
distribution is GeV. Under the assumption of
s-channel helicity conservation (SCHC), we determine the ratio of longitudinal
to transverse cross sections to be . A 2-gluon exchange model
is able to reproduce the main features of the data.Comment: Phys Rev C, 15 pages, 18 figure
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured using the reaction in the
resonance region at and 0.65 GeV. No previous
data exist for this reaction channel. The kinematically
complete experiment was performed at Jefferson Lab with the CEBAF Large
Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an
energy of 1.515 GeV. A partial wave analysis of the data shows generally better
agreement with recent phenomenological models of pion electroproduction
compared to the previously measured channel. A fit to both
and channels using a unitary isobar model suggests the unitarized
Born terms provide a consistent description of the non-resonant background. The
-channel pion pole term is important in the channel through a
rescattering correction, which could be model-dependent.Comment: 6 pages, LaTex, 5 eps figures: Submitted to PRC/Brief Reports v2:
Updated referenc
Quantitative 3-Dimensional Imaging of Murine Neointimal and Atherosclerotic Lesions by Optical Projection Tomography
Traditional methods for the analysis of vascular lesion formation are labour intensive to perform - restricting study to ‘snapshots’ within each vessel. This study was undertaken to determine the suitability of optical projection tomographic (OPT) imaging for the 3-dimensional representation and quantification of intimal lesions in mouse arteries. = 0.85), confirming both the accuracy of this methodology and its non-destructive nature. It was also possible to record volumetric measurements of lesion and lumen and these were highly reproducible between scans (coefficient of variation = 5.36%, 11.39% and 4.79% for wire- and ligation-injury and atherosclerosis, respectively).These data demonstrate the eminent suitability of OPT for imaging of atherosclerotic and neointimal lesion formation, providing a much needed means for the routine 3-dimensional analysis of vascular morphology in studies of this type
- …