48 research outputs found

    Floating matter: a neglected component of the ecological integrity of rivers

    Get PDF
    Floating matter (FM) is a pivotal, albeit neglected, element along river corridors contributing to their ecological integrity. FM consists of particulate matter of natural (e.g. wood, branches, leaves, seeds) and anthropogenic (e.g. plastic, human waste) origin as well as of organisms that, due to its properties, is able to float on the water surface. In this paper, we provide a comprehensive overview of the FM cycle and the fundamental environmental functions FM provides along rivers. Indeed, FM serves as an important geomorphological agent, a dispersal vector for animals and plant propagules, a habitat, a resource, and a biogeochemical component. Furthermore, we collected data on the amount of FM accumulating at dams and in reservoirs, and related it to key characteristics of the respective catchments. River fragmentation truncates the natural dynamics of FM through its extraction at damming structures, alteration in the flow regime, and low morphological complexity, which may decrease FM retention. Finally, we identify key knowledge gaps in relation to the role FM plays in supporting river integrity, and briefly discuss FM management strategies. (c) 2019, Springer Nature Switzerland AG.This work has been carried out within the SMART Joint Doctorate Programme ‘Science for the MAnagement of Rivers and their Tidal systems’, funded by the Erasmus Mundus programme of the European Union (http://www.riverscience.it). We also acknowledge financial support through the Excellence Initiative at the University of TĂŒbingen, funded by the German Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG). OS is thankful for a partial support from IGB equal opportunity fund for young female scientists and DFG (SU 405/10-1). SDL has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreement no. 748625

    A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication

    Get PDF
    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome

    From DPSIR the DAPSI(W)R(M) Emerges
 a Butterfly – ‘protecting the natural stuff and delivering the human stuff’

    Get PDF
    The complexity of interactions and feedbacks between human activities and ecosystems can make the analysis of such social-ecological systems intractable. In order to provide a common means to understand and analyse the links between social and ecological process within these systems, a range of analytical frameworks have been developed and adopted. Following decades of practical experience in implementation, the Driver Pressure State Impact Response (DPSIR) conceptual framework has been adapted and re-developed to become the D(A)PSI(W)R(M). This paper describes in detail the D(A)PSI(W)R(M) and its development from the original DPSIR conceptual frame. Despite its diverse application and demonstrated utility, a number of inherent shortcomings are identified. In particular the DPSIR model family tend to be best suited to individual environmental pressures and human activities and their resulting environmental problems, having a limited focus on the supply and demand of benefits from nature. We present a derived framework, the “Butterfly”, a more holistic approach designed to expand the concept. The “Butterfly” model, moves away from the centralised accounting framework approach while more-fully incorporating the complexity of social and ecological systems, and the supply and demand of ecosystem services, which are central to human-environment interactions

    Host Immune Responses to a Viral Immune Modulating Protein: Immunogenicity of Viral Interleukin-10 in Rhesus Cytomegalovirus-Infected Rhesus Macaques

    Get PDF
    , consistent with a central role for rhcmvIL-10 during acute virus-host interactions. Since cmvIL-10 and rhcmvIL-10 are extremely divergent from the cIL-10 of their respective hosts, vaccine-mediated neutralization of their function could inhibit establishment of viral persistence without inhibition of cIL-10.As a prelude to evaluating cmvIL-10-based vaccines in humans, the rhesus macaque model of HCMV was used to interrogate peripheral and mucosal immune responses to rhcmvIL-10 in RhCMV-infected animals. ELISA were used to detect rhcmvIL-10-binding antibodies in plasma and saliva, and an IL-12-based bioassay was used to quantify plasma antibodies that neutralized rhcmvIL-10 function. rhcmvIL-10 is highly immunogenic during RhCMV infection, stimulating high avidity rhcmvIL-10-binding antibodies in the plasma of all infected animals. Most infected animals also exhibited plasma antibodies that partially neutralized rhcmvIL-10 function but did not cross-neutralize the function of rhesus cIL-10. Notably, minimally detectable rhcmvIL-10-binding antibodies were detected in saliva.This study demonstrates that rhcmvIL-10, as a surrogate for cmvIL-10, is a viable vaccine candidate because (1) it is highly immunogenic during natural RhCMV infection, and (2) neutralizing antibodies to rhcmvIL-10 do not cross-react with rhesus cIL-10. Exceedingly low rhcmvIL-10 antibodies in saliva further suggest that the oral mucosa, which is critical in RhCMV natural history, is associated with suboptimal anti-rhcmvIL-10 antibody responses
    corecore