538 research outputs found
Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two- Plus Three-Nucleon Interactions
We formulate the In-Medium Similarity Renormalization Group (IM-SRG) for
open-shell nuclei using a multi-reference formalism based on a generalized Wick
theorem introduced in quantum chemistry. The resulting multi-reference IM-SRG
(MR-IM-SRG) is used to perform the first ab initio study of even oxygen
isotopes with chiral NN and 3N Hamiltonians, from the proton to the neutron
drip lines. We obtain an excellent reproduction of experimental ground-state
energies with quantified uncertainties, which is validated by results from the
Importance-Truncated No-Core Shell Model and the Coupled Cluster method. The
agreement between conceptually different many-body approaches and experiment
highlights the predictive power of current chiral two- and three-nucleon
interactions, and establishes the MR-IM-SRG as a promising new tool for ab
initio calculations of medium-mass nuclei far from shell closures.Comment: 5 pages, 4 figures, v2 corresponding to published versio
Probing ferroelectricity in highly conducting materials through their elastic response: persistence of ferroelectricity in metallic BaTiO3-d
The question whether ferroelectricity (FE) may coexist with a metallic or
highly conducting state, or rather it must be suppressed by the screening from
the free charges, is the focus of a rapidly increasing number of theoretical
studies and is finally receiving positive experimental responses. The issue is
closely related to the thermoelectric and multiferroic (also magnetic)
applications of FE materials, where the electrical conductivity is required or
spurious. In these circumstances, the traditional methods for probing
ferroelectricity are hampered or made totally ineffective by the free charges,
which screen the polar response to an external electric field. This fact may
explain why more than 40 years passed between the first proposals of FE metals
and the present experimental and theoretical activity. The measurement of the
elastic moduli, Young's modulus in the present case, versus temperature is an
effective method for studying the influence of doping on a FE transition
because the elastic properties are unaffected by electrical conductivity. In
this manner, it is shown that the FE transitions of BaTiO3-d are not suppressed
by electron doping through O vacancies; only the onset temperatures are
depressed, but the magnitudes of the softenings, and hence of the piezoelectric
activity, are initially even increased
Ab Initio study of neutron drops with chiral Hamiltonians
We report ab initio calculations for neutron drops in a 10 MeV external
harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon
interactions. We present total binding energies, internal energies, radii and
odd-even energy differences for neutron numbers N = 2 - 18 using the no-core
shell model with and without importance truncation. Furthermore, we present
total binding energies for N = 8, 16, 20, 28, 40, 50 obtained in a
coupled-cluster approach. Comparisons with Green's Function Monte Carlo
results, where available, using Argonne v8' with three-nucleon interactions
reveal important dependences on the chosen Hamiltonian.Comment: 7 pages, 5 figure
In-Medium Similarity Renormalization Group with Chiral Two- Plus Three-Nucleon Interactions
We use the recently proposed In-Medium Similarity Renormalization Group
(IM-SRG) to carry out a systematic study of closed-shell nuclei up to
\nuc{Ni}{56}, based on chiral two- plus three-nucleon interactions. We
analyze the capabilities of the IM-SRG by comparing our results for the
ground-state energy to Coupled Cluster calculations, as well as to quasi-exact
results from the Importance-Truncated No-Core Shell Model. Using chiral two-
plus three-nucleon Hamiltonians whose resolution scales are lowered by
free-space SRG evolution, we obtain good agreement with experimental binding
energies in \nuc{He}{4} and the closed-shell oxygen isotopes, while the
calcium and nickel isotopes are somewhat overbound.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
Plasmonic Temperature-Programmed Desorption
Temperature-programmed desorption (TPD) allows for the determination of the bonding strength and coverage of molecular mono- or multilayers on a surface and is widely used in surface science. In its traditional form using a mass spectrometric readout, this information is derived indirectly by analysis of resulting desorption peaks. This is problematic because the mass spectrometer signal not only originates from the sample surface but also potentially from other surfaces in the measurement chamber. As a complementary alternative, we introduce plasmonic TPD, which directly measures the surface coverage of molecular species adsorbed on metal nanoparticles at ultrahigh vacuum conditions. Using the examples of methanol and benzene on Au nanoparticle surfaces, the method can resolve all relevant features in the submonolayer and multilayer regimes. Furthermore, it enables the study of two types of nanoparticles simultaneously, which is challenging in a traditional TPD experiment, as we demonstrate specifically for Au and Ag
Диэлектрические и пироэлектрические свойства керамики BTS с градиентом концентрации олова
Исследована не содержащая свинец керамика BaTi1-xSnxO3 (BTS) с изменяющейся по толщине образца концентрацией олова 0.075( x ( 0.15. Установлено наличие дополнительных максимумов на температурных зависимостях диэлектрической проницаемости и пирокоэффициента, а также аномалий остаточной поляризации, обусловленных многофазной структурой образцов. Показано, что цикл нагрев-охлаждение изменяет профиль поляризации, приводя к его выравниванию у образцов, полученных разными способами
Low-energy neutron-deuteron reactions with N3LO chiral forces
We solve three-nucleon Faddeev equations with nucleon-nucleon and
three-nucleon forces derived consistently in the framework of chiral
perturbation theory at next-to-next-to-next-to-leading order in the chiral
expansion. In this first investigation we include only matrix elements of the
three-nucleon force for partial waves with the total two-nucleon
(three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron
elastic scattering and deuteron breakup reaction are studied. Emphasis is put
on Ay puzzle in elastic scattering and cross sections in symmetric-space-star
and neutron-neutron quasi-free-scattering breakup configurations, for which
large discrepancies between data and theory have been reported.Comment: 22 pages, 7 figure
- …