226 research outputs found

    Quantum teleportation on a photonic chip

    Full text link
    Quantum teleportation is a fundamental concept in quantum physics which now finds important applications at the heart of quantum technology including quantum relays, quantum repeaters and linear optics quantum computing (LOQC). Photonic implementations have largely focussed on achieving long distance teleportation due to its suitability for decoherence-free communication. Teleportation also plays a vital role in the scalability of photonic quantum computing, for which large linear optical networks will likely require an integrated architecture. Here we report the first demonstration of quantum teleportation in which all key parts - entanglement preparation, Bell-state analysis and quantum state tomography - are performed on a reconfigurable integrated photonic chip. We also show that a novel element-wise characterisation method is critical to mitigate component errors, a key technique which will become increasingly important as integrated circuits reach higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted manuscript; Nature Photonics (2014

    Integrated photonic quantum gates for polarization qubits

    Get PDF
    Integrated photonic circuits have a strong potential to perform quantum information processing. Indeed, the ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic Controlled-NOT (CNOT) gate for polarization encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.Comment: 6 pages, 4 figure

    Genistein Improves Neuropathology and Corrects Behaviour in a Mouse Model of Neurodegenerative Metabolic Disease

    Get PDF
    BACKGROUND: Neurodegenerative metabolic disorders such as mucopolysaccharidosis IIIB (MPSIIIB or Sanfilippo disease) accumulate undegraded substrates in the brain and are often unresponsive to enzyme replacement treatments due to the impermeability of the blood brain barrier to enzyme. MPSIIIB is characterised by behavioural difficulties, cognitive and later motor decline, with death in the second decade of life. Most of these neurodegenerative lysosomal storage diseases lack effective treatments. We recently described significant reductions of accumulated heparan sulphate substrate in liver of a mouse model of MPSIIIB using the tyrosine kinase inhibitor genistein. METHODOLOGY/PRINCIPAL FINDINGS: We report here that high doses of genistein aglycone, given continuously over a 9 month period to MPSIIIB mice, significantly reduce lysosomal storage, heparan sulphate substrate and neuroinflammation in the cerebral cortex and hippocampus, resulting in correction of the behavioural defects observed. Improvements in synaptic vesicle protein expression and secondary storage in the cerebral cortex were also observed. CONCLUSIONS/SIGNIFICANCE: Genistein may prove useful as a substrate reduction agent to delay clinical onset of MPSIIIB and, due to its multimodal action, may provide a treatment adjunct for several other neurodegenerative metabolic diseases

    EB1 Is Required for Spindle Symmetry in Mammalian Mitosis

    Get PDF
    Most information about the roles of the adenomatous polyposis coli protein (APC) and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells

    Efficient quantum computing using coherent photon conversion

    Full text link
    Single photons provide excellent quantum information carriers, but current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed single photons, while linear-optics gates are inherently probabilistic. Here, we introduce a deterministic scheme for photonic quantum information. Our single, versatile process---coherent photon conversion---provides a full suite of photonic quantum processing tools, from creating high-quality heralded single- and multiphoton states free of higher-order imperfections to implementing deterministic multiqubit entanglement gates and high-efficiency detection. It fulfils all requirements for a scalable photonic quantum computing architecture. Using photonic crystal fibres, we experimentally demonstrate a four-colour nonlinear process usable for coherent photon conversion and show that current technology provides a feasible path towards deterministic operation. Our scheme, based on interacting bosonic fields, is not restricted to optical systems, but could also be implemented in optomechanical, electromechanical and superconducting systems which exhibit extremely strong intrinsic nonlinearities.Comment: 12 pages, 9 figure

    Neurocognitive Consequences of HIV Infection in Older Adults: An Evaluation of the “Cortical” Hypothesis

    Get PDF
    The incidence and prevalence of older adults living with HIV infection is increasing. Recent reports of increased neuropathologic and metabolic alterations in older HIV+ samples, including increased cortical beta-amyloid, have led some researchers to suggest that aging with HIV may produce a neuropsychological profile akin to that which is observed in “cortical” dementias (e.g., impairment in memory consolidation). To evaluate this possibility, we examined four groups classified by HIV serostatus and age (i.e., younger ≤40 years and older ≥50 years): (1) Younger HIV− (n = 24); (2) Younger HIV+ (n = 24); (3) Older HIV− (n = 20); and (4) Older HIV+ (n = 48). Main effects of aging were observed on episodic learning and memory, executive functions, and visuoconstruction, and main effects of HIV were observed on measures of verbal learning and memory. The interaction of age and HIV was observed on a measure of verbal recognition memory, which post hoc analyses showed to be exclusively attributed to the superior performance of the younger HIV seronegative group. Thus, in this sample of older HIV-infected individuals, the combined effects of HIV and aging do not appear to result in a “cortical” pattern of cognitive deficits

    Prolonged Depression-Like Behavior Caused by Immune Challenge: Influence of Mouse Strain and Social Environment

    Get PDF
    Immune challenge by bacterial lipopolysaccharide (LPS) causes short-term behavioral changes indicative of depression. The present study sought to explore whether LPS is able to induce long-term changes in depression-related behavior and whether such an effect depends on mouse strain and social context. LPS (0.83 mg/kg) or vehicle was administered intraperitoneally to female CD1 and C57BL/6 mice that were housed singly or in groups of 4. Depression-like behavior was assessed with the forced swim test (FST) 1 and 28 days post-treatment. Group-housed CD1 mice exhibited depression-like behavior 1 day post-LPS, an effect that leveled off during the subsequent 28 days, while the behavior of singly housed CD1 mice was little affected. In contrast, singly housed C57BL/6 mice responded to LPS with an increase in depression-like behavior that was maintained for 4 weeks post-treatment and confirmed by the sucrose preference test. Group-housed C57BL/6 mice likewise displayed an increased depression-like behavior 4 weeks post-treatment. The behavioral changes induced by LPS in C57BL/6 mice were associated with a particularly pronounced rise of interleukin-6 in blood plasma within 1 day post-treatment and with changes in the dynamics of the corticosterone response to the FST. The current data demonstrate that immune challenge with LPS is able to induce prolonged depression-like behavior, an effect that depends on genetic background (strain). The discovery of an experimental model of long-term depression-like behavior after acute immune challenge is of relevance to the analysis of the epigenetic and pathophysiologic mechanisms of immune system-related affective disorders

    An analysis of the utilisation of chemoprophylaxis against Pneumocystis jirovecii pneumonia in patients with malignancy receiving corticosteroid therapy at a cancer hospital

    Get PDF
    Pneumocystis jirovecii pneumonia (PCP) is associated with high mortality in immunocompromised patients without human immunodeficiency virus infection. However, chemoprophylaxis is highly effective. In patients with solid tumours or haematologic malignancy, several risk factors for developing PCP have been identified, predominantly corticosteroid therapy. The aims of this study were to identify the potentially preventable cases of PCP in patients receiving corticosteroid therapy at a tertiary care cancer centre and to estimate the frequency of utilisation of chemoprophylaxis in these patients. Two retrospective reviews were performed. Over a 10-year period, 14 cases of PCP were identified: no cases were attributable to failed chemoprophylaxis, drug allergy or intolerance. During a 6-month period, 73 patients received high-dose corticosteroid therapy (⩾25 mg prednisolone or ⩾4 mg dexamethasone daily) for ⩾4 weeks. Of these, 22 (30%) had haematologic malignancy, and 51 (70%) had solid tumours. Fewer patients with solid tumours received prophylaxis compared to patients with haematologic malignancy (3.9 vs 63.6%, P<0.0001). Guidelines for PCP chemoprophylaxis in patients with haematologic malignancy or solid tumours who receive corticosteroid therapy are proposed. Successful primary prevention of PCP in this population will require a multifaceted approach targeting the suboptimal prescribing patterns for chemoprophylaxis
    corecore