157 research outputs found
Moving Walkways, Escalators, and Elevators
We study a simple geometric model of transportation facility that consists of
two points between which the travel speed is high. This elementary definition
can model shuttle services, tunnels, bridges, teleportation devices, escalators
or moving walkways. The travel time between a pair of points is defined as a
time distance, in such a way that a customer uses the transportation facility
only if it is helpful.
We give algorithms for finding the optimal location of such a transportation
facility, where optimality is defined with respect to the maximum travel time
between two points in a given set.Comment: 16 pages. Presented at XII Encuentros de Geometria Computacional,
Valladolid, Spai
The Complexity of Order Type Isomorphism
The order type of a point set in maps each -tuple of points to
its orientation (e.g., clockwise or counterclockwise in ). Two point sets
and have the same order type if there exists a mapping from to
for which every -tuple of and the
corresponding tuple in have the same
orientation. In this paper we investigate the complexity of determining whether
two point sets have the same order type. We provide an algorithm for
this task, thereby improving upon the algorithm
of Goodman and Pollack (1983). The algorithm uses only order type queries and
also works for abstract order types (or acyclic oriented matroids). Our
algorithm is optimal, both in the abstract setting and for realizable points
sets if the algorithm only uses order type queries.Comment: Preliminary version of paper to appear at ACM-SIAM Symposium on
Discrete Algorithms (SODA14
Colorful Strips
Given a planar point set and an integer , we wish to color the points with
colors so that any axis-aligned strip containing enough points contains all
colors. The goal is to bound the necessary size of such a strip, as a function
of . We show that if the strip size is at least , such a coloring
can always be found. We prove that the size of the strip is also bounded in any
fixed number of dimensions. In contrast to the planar case, we show that
deciding whether a 3D point set can be 2-colored so that any strip containing
at least three points contains both colors is NP-complete.
We also consider the problem of coloring a given set of axis-aligned strips,
so that any sufficiently covered point in the plane is covered by colors.
We show that in dimensions the required coverage is at most .
Lower bounds are given for the two problems. This complements recent
impossibility results on decomposition of strip coverings with arbitrary
orientations. Finally, we study a variant where strips are replaced by wedges
The parameterized complexity of some geometric problems in unbounded dimension
We study the parameterized complexity of the following fundamental geometric
problems with respect to the dimension : i) Given points in \Rd,
compute their minimum enclosing cylinder. ii) Given two -point sets in
\Rd, decide whether they can be separated by two hyperplanes. iii) Given a
system of linear inequalities with variables, find a maximum-size
feasible subsystem. We show that (the decision versions of) all these problems
are W[1]-hard when parameterized by the dimension . %and hence not solvable
in time, for any computable function and constant
%(unless FPT=W[1]). Our reductions also give a -time lower bound
(under the Exponential Time Hypothesis)
A polynomial bound for untangling geometric planar graphs
To untangle a geometric graph means to move some of the vertices so that the
resulting geometric graph has no crossings. Pach and Tardos [Discrete Comput.
Geom., 2002] asked if every n-vertex geometric planar graph can be untangled
while keeping at least n^\epsilon vertices fixed. We answer this question in
the affirmative with \epsilon=1/4. The previous best known bound was
\Omega((\log n / \log\log n)^{1/2}). We also consider untangling geometric
trees. It is known that every n-vertex geometric tree can be untangled while
keeping at least (n/3)^{1/2} vertices fixed, while the best upper bound was
O(n\log n)^{2/3}. We answer a question of Spillner and Wolff [arXiv:0709.0170
2007] by closing this gap for untangling trees. In particular, we show that for
infinitely many values of n, there is an n-vertex geometric tree that cannot be
untangled while keeping more than 3(n^{1/2}-1) vertices fixed. Moreover, we
improve the lower bound to (n/2)^{1/2}.Comment: 14 pages, 7 figure
Deterministic Sampling and Range Counting in Geometric Data Streams
We present memory-efficient deterministic algorithms for constructing
epsilon-nets and epsilon-approximations of streams of geometric data. Unlike
probabilistic approaches, these deterministic samples provide guaranteed bounds
on their approximation factors. We show how our deterministic samples can be
used to answer approximate online iceberg geometric queries on data streams. We
use these techniques to approximate several robust statistics of geometric data
streams, including Tukey depth, simplicial depth, regression depth, the
Thiel-Sen estimator, and the least median of squares. Our algorithms use only a
polylogarithmic amount of memory, provided the desired approximation factors
are inverse-polylogarithmic. We also include a lower bound for non-iceberg
geometric queries.Comment: 12 pages, 1 figur
Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence.
To determine the role for mutations of MECP2 in Rett syndrome, we generated isogenic lines of human induced pluripotent stem cells, neural progenitor cells, and neurons from patient fibroblasts with and without MECP2 expression in an attempt to recapitulate disease phenotypes in vitro. Molecular profiling uncovered neuronal-specific gene expression changes, including induction of a senescence-associated secretory phenotype (SASP) program. Patient-derived neurons made without MECP2 showed signs of stress, including induction of P53, and senescence. The induction of P53 appeared to affect dendritic branching in Rett neurons, as P53 inhibition restored dendritic complexity. The induction of P53 targets was also detectable in analyses of human Rett patient brain, suggesting that this disease-in-a-dish model can provide relevant insights into the human disorder
Entropy, Triangulation, and Point Location in Planar Subdivisions
A data structure is presented for point location in connected planar
subdivisions when the distribution of queries is known in advance. The data
structure has an expected query time that is within a constant factor of
optimal. More specifically, an algorithm is presented that preprocesses a
connected planar subdivision G of size n and a query distribution D to produce
a point location data structure for G. The expected number of point-line
comparisons performed by this data structure, when the queries are distributed
according to D, is H + O(H^{2/3}+1) where H=H(G,D) is a lower bound on the
expected number of point-line comparisons performed by any linear decision tree
for point location in G under the query distribution D. The preprocessing
algorithm runs in O(n log n) time and produces a data structure of size O(n).
These results are obtained by creating a Steiner triangulation of G that has
near-minimum entropy.Comment: 19 pages, 4 figures, lots of formula
Locked and Unlocked Chains of Planar Shapes
We extend linkage unfolding results from the well-studied case of polygonal
linkages to the more general case of linkages of polygons. More precisely, we
consider chains of nonoverlapping rigid planar shapes (Jordan regions) that are
hinged together sequentially at rotatable joints. Our goal is to characterize
the families of planar shapes that admit locked chains, where some
configurations cannot be reached by continuous reconfiguration without
self-intersection, and which families of planar shapes guarantee universal
foldability, where every chain is guaranteed to have a connected configuration
space. Previously, only obtuse triangles were known to admit locked shapes, and
only line segments were known to guarantee universal foldability. We show that
a surprisingly general family of planar shapes, called slender adornments,
guarantees universal foldability: roughly, the distance from each edge along
the path along the boundary of the slender adornment to each hinge should be
monotone. In contrast, we show that isosceles triangles with any desired apex
angle less than 90 degrees admit locked chains, which is precisely the
threshold beyond which the inward-normal property no longer holds.Comment: 23 pages, 25 figures, Latex; full journal version with all proof
details. (Fixed crash-induced bugs in the abstract.
Identification and single-cell functional characterization of an endodermally biased pluripotent substate in human embryonic stem cells
Human embryonic stem cells (hESCs) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESCs we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single-cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long-term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single-cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm-biased stem cell state
- …