405 research outputs found

    [C II] emission from galactic nuclei in the presence of X-rays

    Full text link
    The luminosity of [C II] is used to probe the star formation rate in galaxies, but the correlation breaks down in some active galactic nuclei (AGNs). Models of the [C II] emission from galactic nuclei do not include the influence of X-rays on the carbon ionization balance, which may be a factor in reducing the [C II] luminosity. We calculate the [C II] luminosity in galactic nuclei under the influence of bright sources of X-rays. We solve the balance equation of the ionization states of carbon as a function of X-ray flux, electron, atomic hydrogen, and molecular hydrogen density. These are input to models of [CII] emission from the interstellar medium (ISM) in galactic nuclei. We also solve the distribution of the ionization states of oxygen and nitrogen in highly ionized regions. We find that the dense warm ionized medium (WIM) and dense photon dominated regions (PDRs) dominate the [C II] emission when no X-rays are present. The X-rays in galactic nuclei can affect strongly the C+^+ abundance in the WIM converting some fraction to C2+^{2+} and higher ionization states and thus reducing its [C II] luminosity. For an X-ray luminosity > 1043^{43} erg/s the [C II] luminosity can be suppressed by a factor of a few, and for very strong sources, >1044^{44} erg/s, such as found for many AGNs by an order of magnitude. Comparison of the model with extragalactic sources shows that the [C II] to far-infrared ratio declines for an X-ray luminosity >1043^{43} erg/s, in reasonable agreement with our model.Comment: 16 pages and 14 figures, accepted for publication in A&

    L1599B: Cloud Envelope and C+ Emission in a Region of Moderately Enhanced Radiation Field

    Full text link
    We study the effects of an asymmetric radiation field on the properties of a molecular cloud envelope. We employ observations of carbon monoxide (12CO and 13CO), atomic carbon, ionized carbon, and atomic hydrogen to analyze the chemical and physical properties of the core and envelope of L1599B, a molecular cloud forming a portion of the ring at approximately 27 pc from the star Lambda Ori. The O III star provides an asymmetric radiation field that produces a moderate enhancement of the external radiation field. Observations of the [CII] fine structure line with the GREAT instrument on SOFIA indicate a significant enhanced emission on the side of the cloud facing the star, while the [Ci], 12CO and 13CO J = 1-0 and 2-1, and 12CO J = 3-2 data from the PMO and APEX telescopes suggest a relatively typical cloud interior. The atomic, ionic, and molecular line centroid velocities track each other very closely, and indicate that the cloud may be undergoing differential radial motion. The HI data from the Arecibo GALFA survey and the SOFIA/GREAT [CII] data do not suggest any systematic motion of the halo gas, relative to the dense central portion of the cloud traced by 12CO and 13CO.Comment: 9 Figure

    Characterizing the transition from diffuse atomic to dense molecular clouds in the Magellanic clouds with [CII], [CI], and CO

    Full text link
    We present and analyze deep Herschel/HIFI observations of the [CII] 158um, [CI] 609um, and [CI] 370um lines towards 54 lines-of-sight (LOS) in the Large and Small Magellanic clouds. These observations are used to determine the physical conditions of the line--emitting gas, which we use to study the transition from atomic to molecular gas and from C^+ to C^0 to CO in their low metallicity environments. We trace gas with molecular fractions in the range 0.1<f(H2)<1, between those in the diffuse H2 gas detected by UV absorption (f(H2)<0.2) and well shielded regions in which hydrogen is essentially completely molecular. The C^0 and CO column densities are only measurable in regions with molecular fractions f(H2)>0.45 in both the LMC and SMC. Ionized carbon is the dominant gas-phase form of this element that is associated with molecular gas, with C^0 and CO representing a small fraction, implying that most (89% in the LMC and 77% in the SMC) of the molecular gas in our sample is CO-dark H2. The mean X_CO conversion factors in our LMC and SMC sample are larger than the value typically found in the Milky Way. When applying a correction based on the filling factor of the CO emission, we find that the values of X_CO in the LMC and SMC are closer to that in the Milky Way. The observed [CII] intensity in our sample represents about 1% of the total far-infrared intensity from the LOSs observed in both Magellanic Clouds.Comment: 32 pages, 21 figures, Accepted to Ap

    Phase-Field Model of Mode III Dynamic Fracture

    Full text link
    We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.Comment: submitted to PR

    Probing ISM Structure in Trumpler 14 & Carina I Using The Stratospheric Terahertz Observatory 2

    Get PDF
    We present observations of the Trumpler 14/Carina I region carried out using the Stratospheric Terahertz Observatory 2 (STO2). The Trumpler 14/Carina I region is in the west part of the Carina Nebula Complex, which is one of the most extreme star-forming regions in the Milky Way. We observed Trumpler 14/Carina I in the 158 μ\mum transition of [C\,{\sc ii}] with a spatial resolution of 48′′'' and a velocity resolution of 0.17 km s−1^{-1}. The observations cover a 0.25∘^\circ by 0.28∘^\circ area with central position {\it l} = 297.34∘^\circ, {\it b} = -0.60∘^\circ. The kinematics show that bright [C\,{\sc ii}] structures are spatially and spectrally correlated with the surfaces of CO clouds, tracing the photodissociation region and ionization front of each molecular cloud. Along 7 lines of sight that traverse Tr 14 into the dark ridge to the southwest, we find that the [C\,{\sc ii}] luminosity from the HII region is 3.7 times that from the PDR. In same los we find in the PDRs an average ratio of 1:4.1:5.6 for the mass in atomic gas:dark-CO gas: molecular gas traced by CO. Comparing multiple gas tracers including HI 21cm, [C\,{\sc ii}], CO, and radio recombination lines, we find that the HII regions of the Carina Nebula Complex are well-described as HII regions with one-side freely expanding towards us, consistent with the champagne model of ionized gas evolution. The dispersal of the GMC in this region is dominated by EUV photoevaporation; the dispersal timescale is 20-30 Myr.Comment: ApJ accepte

    Catastrophizing and Parental Response to Child Symptom Complaints

    Get PDF
    This study investigated whether catastrophic thinking about pain by children with functional abdominal pain or by their parents is associated with health outcomes in the child. Subjects were 132 parent-child dyads. Child catastrophizing predicted child depression, anxiety and functional disability. Parents’ catastrophizing cognitions about their own pain predicted self-reported protective responses to their children’s abdominal pain (responding in ways that encourage illness behavior). Protectiveness, in turn, predicted child functional disability. All findings held despite controlling for child age, gender, and symptom severity. These results suggest that catastrophic cognitions play an important role in how children and parents cope and respond to functional abdominal pain, and may have implications for assessment and treatment in the clinical setting
    • …
    corecore