38,340 research outputs found

    Split radius-form blocks for tube benders

    Get PDF
    Two-piece, radius-form block permits accurate forming and removing of parts with more than a 180 degree bend. Tube bender can shape flexible metal tubing in applications dealing with plumbing, heating, and pressure transmission lines

    Study of an ACT demonstrator with substantial performance improvements using a redesigned JetStar

    Get PDF
    The feasibility was studied of modifying a JetStar airplane into a demonstrator of benefits to be achieved from incorporating active control concepts in the preliminary design of transport type aircraft. Substantial benefits are shown in terms of fuel economy and community noise by virtue of reduction in induced drag through use of a high aspect ratio wing which is made possible by a gust alleviation system. An intermediate configuration was defined which helps to isolate the benefits produced by active controls technology from those due to other configuration variables

    Using particle shape to induce tilted and bistable liquid crystal anchoring

    Get PDF
    We use Monte Carlo simulations of hard Gaussian overlap (HGO) particles symmetrically confined in slab geometry to investigate the role of particle-substrate interactions on liquid crystalline anchoring. Despite the restriction here to purely steric interactions and smooth substrates, a range of behaviours are captured, including tilted anchoring and homeotropic-planar bistability. These macroscopic behaviours are all achieved through appropriate tuning of the microscopics of the HGO-substrate interaction, based upon non-additive descriptions for the HGO-substrate shape parameter.</p

    Sea-level change and storm surges in the context of climate change

    Get PDF
    This paper reviews the latest research in New Zealand surrounding the issues of sea-level rise and extreme sea levels in the context of global warming and variability in the Pacific-wide El Nino– Southern Oscillation (ENSO). Past records of climate, sea level (excluding tides) and sea and air temperatures have shown that they are continuously fluctuating over various long-term timescales of years, decades and centuries. This has made it very difficult to determine whether the anthropogenic effects such as increased levels of “greenhouse” gases are having an accelerating effect on global sea levels or an increased incidence of extreme storms. Over the past century, global sea level has risen by 10–25 cm, and is in line with the rise in relative sea level at New Zealand’s main ports of +1.7 mm yr –1. What has become very clear is the need to better understand interannual (year-to-year) and decadal variability in sea-level, as these larger signals of the order of 5–15 cm in annual-mean sea level have a significant “flow-on” effect on the long-term trend in sea level. The paper describes sea level variability in northern New Zealand—both long- and short-term—involved in assessing the regional trends in sea level. The paper also discusses the relative contributions of tides, barometric pressure and wind set-up in causing extreme sea levels during storm surges. Some recent research also looked at a related question—Is there any sign of increased storminess, and hence storm surge, in northern New Zealand due to climate change? The paper concludes that, while no one can be completely sure how sea-level and the degree of storminess will respond in the near future, what is clear is that interannual and decadal variability in sea level is inextricably linked with Pacific-wide ENSO response and longer inter-decadal shifts in the Pacific climate regime, such as the latest shift in 1976

    Single-spin magnetometry with multi-pulse sensing sequences

    Full text link
    We experimentally demonstrate single-spin magnetometry with multi-pulse sensing sequences. The use of multi-pulse sequences can greatly increase the sensing time per measurement shot, resulting in enhanced ac magnetic field sensitivity. We theoretically derive and experimentally verify the optimal number of sensing cycles, for which the effects of decoherence and increased sensing time are balanced. We perform these experiments for oscillating magnetic fields with fixed phase as well as for fields with random phase. Finally, by varying the phase and frequency of the ac magnetic field, we measure the full frequency-filtering characteristics of different multi-pulse schemes and discuss their use in magnetometry applications.Comment: 4 pages, 4 figures. Final versio

    Development of the novel transportable online mass-spectrometer PILOT-Trap with dynamic buffer-gas cooling for stored ions

    Get PDF
    The novel transportable PILOT-Trap experiment set up in the framework of this thesis aims to measure masses of short-lived nuclides with low production rates and half-lives > 100 ms with relative uncertainties of about 10-8. Applications for these precision mass measurements include atomic, nuclear and neutrino physics. The setup of the experiment includes a 6T superconducting coldhead-cooled magnet, which ensures transportability to different radioactive beam facilities. There, this setup enables mass measurements of, for example, heavy or superheavy nuclides that are produced only in tiny quantities of a few ions per hour. To deal with these low production rates a single trap is planned to be used for cooling the ion’s motions with a modified dynamic buffer-gas cooling technique as well as for measuring the ion’s motional frequencies. To make such a combination of two techniques in one trap feasible, a fast piezo valve is being developed, which enables a rapid and precisely timed helium injection into the Penning trap, followed by a fast helium release to be directly able to measure in the same trap. The latter is going to be realized by the developed rotating-disc approach. The cooling of the ion’s motions and the measurement of its motional frequencies in the same trap increases the overall efficiency by avoiding the ion transport stage between different traps. In addition to the development of the dynamic cooling method, the setup and initial test measurements of the PILOT-Trap mass spectrometer developed in this work are presented. These range from the initial detection of ions at the detector, through the storage and cooling of ions, to the performance of phase-sensitive measurements

    Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson's disease

    Get PDF
    Muscarinic and nicotinic cholinergic receptors and choline acetyltransferase activity were studied in postmortem brain tissue from patients with histopathologically confirmed Parkinson's disease and matched control subjects. Using washed membrane homogenates from the frontal cortex, hippocampus, caudate nucleus, and putamen, saturation analysis of specific receptor binding was performed for the total number of muscarinic receptors with [3H]quinuclidinyl benzilate, for muscarinic M1 receptors with [3H]pirenzepine, for muscarinic M2 receptors with [3H]oxotremorine-M, and for nicotinic receptors with (-)-[3H]nicotine. In comparison with control tissues, choline acetyl-transferase activity was reduced in the frontal cortex and hippocampus and unchanged in the caudate nucleus and putamen of parkinsonian patients. In Parkinson's disease the maximal binding site density for [3H]quinuclidinyl benzilate was increased in the frontal cortex and unaltered in the hippocampus, caudate nucleus, and putamen. Specific [3H]pirenzepine binding was increased in the frontal cortex, unaltered in the hippocampus, and decreased in the caudate nucleus and putamen. In parkinsonian patients Bmax values for specific [3H]oxotremorine-M binding were reduced in the cortex and unchanged in the hippocampus and striatum compared with controls. Maximal (-)-[3H]nicotine binding was reduced in both the cortex and hippocampus and unaltered in both the caudate nucleus and putamen. Alterations of the equilibrium dissociation constant were not observed for any ligand in any of the brain areas examined. The present results suggest that both the innominatocortical and the septohippocampal cholinergic systems degenerate in Parkinson's disease.(ABSTRACT TRUNCATED AT 250 WORDS

    The conduction pathway of potassium channels is water free under physiological conditions.

    Get PDF
    Ion conduction through potassium channels is a fundamental process of life. On the basis of crystallographic data, it was originally proposed that potassium ions and water molecules are transported through the selectivity filter in an alternating arrangement, suggesting a "water-mediated" knock-on mechanism. Later on, this view was challenged by results from molecular dynamics simulations that revealed a "direct" knock-on mechanism where ions are in direct contact. Using solid-state nuclear magnetic resonance techniques tailored to characterize the interaction between water molecules and the ion channel, we show here that the selectivity filter of a potassium channel is free of water under physiological conditions. Our results are fully consistent with the direct knock-on mechanism of ion conduction but contradict the previously proposed water-mediated knock-on mechanism
    corecore