367 research outputs found

    Competing exciton localization effects due to disorder and shallow defects in semiconductor alloys

    Get PDF
    We demonstrate that excitons in semiconductor alloys are subject to competing localization effects due to disorder (random potential fluctuations) and shallow point defects (impurities). The relative importance of these effects varies with alloy chemical composition, impurity activation energy as well as temperature. We evaluate this effect quantitatively for MgxZn1−xO : Al (0 6 x 6 0.058) and find that exciton localization at low (2 K) and high (300 K) temperatures is dominated by shallow donor impurities and alloy disorder, respectively

    Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups

    Get PDF
    Task-specific groups are often formed in an ad-hoc manner within big structures, like companies. Take the following typical scenario: A high rank manager decides that a task force group for some project needs to be built. This order is passed down the hierarchy where it finally reaches a manager who calls some employees to form a group. The members should communicate in a secure way and for efficiency reasons symmetric systems are the common choice. To establish joint secret keys for groups, group key exchange (GKE) protocols were developed. If the users are part of e.g. a Public Key Infrastructure (PKI), which is usually the case within a company or a small network, it is possible to achieve authenticated GKE by modifying the protocol and particularly by including signatures. In this paper we recall a GKE due to Burmester and Desmedt which needs only O(log⁥n)O(\log n) communication and computation complexity per user, rather than O(n)O(n) as in the more well-known Burmester-Desmedt protocol, and runs in a constant number of rounds. To achieve authenticated GKE one can apply compilers, however, the existing ones would need O(n)O(n) computation and communication thereby mitigating the advantages of the faster protocol. Our contribution is to extend an existing compiler so that it preserves the computation and communication complexity of the non-authenticated protocol. This is particularly important for tree based protocols

    Sphingomyelins Prevent Propagation of Lipid Peroxidation—LC-MS/MS Evaluation of Inhibition Mechanisms

    Get PDF
    Free radical driven lipid peroxidation is a chain reaction which can lead to oxidative degradation of biological membranes. Propagation vs. termination rates of peroxidation in biological membranes are determined by a variety of factors including fatty acyl chain composition, presence of antioxidants, as well as biophysical properties of mono- or bilayers. Sphingomyelins (SMs), a class of sphingophospholipids, were previously described to inhibit lipid oxidation most probably via the formation of H-bond network within membranes. To address the “antioxidant” potential of SMs, we performed LC-MS/MS analysis of model SM/glycerophosphatidylcholine (PC) liposomes with different SM fraction after induction of radical driven lipid peroxidation. Increasing SM fraction led to a strong suppression of lipid peroxidation. Electrochemical oxidation of non-liposomal SMs eliminated the observed effect, indicating the importance of membrane structure for inhibition of peroxidation propagation. High resolution MS analysis of lipid peroxidation products (LPPs) observed in in vitro oxidized SM/PC liposomes allowed to identify and relatively quantify SM- and PC-derived LPPs. Moreover, mapping quantified LPPs to the known pathways of lipid peroxidation allowed to demonstrate significant decrease in mono-hydroxy(epoxy) LPPs relative to mono-keto derivatives in SM-rich liposomes. The results presented here illustrate an important property of SMs in biological membranes, acting as “biophysical antioxidant”. Furthermore, a ratio between mono-keto/mono-hydroxy(epoxy) oxidized species can be used as a marker of lipid peroxidation propagation in the presence of different antioxidants

    Elligator: Elliptic-curve points indistinguishable from uniform random strings

    Get PDF
    Censorship-circumvention tools are in an arms race against censors. The censors study all traffic passing into and out of their controlled sphere, and try to disable censorship-circumvention tools without completely shutting down the Internet. Tools aim to shape their traffic patterns to match unblocked programs, so that simple traffic profiling cannot identify the tools within a reasonable number of traces; the censors respond by deploying firewalls with increasingly sophisticated deep-packet inspection. Cryptography hides patterns in user data but does not evade censorship if the censor can recognize patterns in the cryptography itself. In particular, elliptic-curve cryptography often transmits points on known elliptic curves, and those points are easily distinguishable from uniform random strings of bits. This paper introduces high-security high-speed elliptic-curve systems in which elliptic-curve points are encoded so as to be indistinguishable from uniform random strings. At a lower level, this paper introduces a new bijection between strings and about half of all curve points; this bijection is applicable to every odd-characteristic elliptic curve with a point of order 2, except for curves of j-invariant 1728. This paper also presents guidelines to construct, and two examples of, secure curves suitable for these encodings

    Recovering from Hail

    Get PDF
    Non-Peer ReviewedHailstorms can be responsible for significant economic loss to the agricultural sector in Alberta. Foliar applications of certain fungicides and nutrient blends have been advocated to promote recovery and yield of hail-damaged crops. Proper understanding of different crop- and hail-related factors is required for an accurate assessment of hail damage to crops, and for evaluations of hail-recovery product claims. This study was undertaken at three locations in Alberta during three growing seasons (2016-18) to determine the effect(s) of two levels of simulated hail severity at three different crop developmental stages including early vegetative, middle vegetative and reproductive stages. Plant growth, yield and grain quality parameters of wheat, field pea and dry bean crops were measured. Simulated hail damage led to reductions in crop height, biomass, canopy cover, grain yield and kernel weight of all three crops. Timing of simulated hail was a critical factor influencing the extent of crop damage with early damage to vegetative stages having less effect on yield compared to damage at later reproductive stages. This trend was especially evident in wheat which did not show significant reduction in yield from the damage at early tillering stages but had significant yield loss with damage at flowering. Foliar applications of fungicides and nutrient blends did not significantly improve crop recovery, grain yield or kernel weight for any of the crops in this study, and thus, their use for the recovery of hail-affected wheat, field pea and dry bean was not supported by the results of this study. Link to Video Presentation: https://youtu.be/vgUDIufNwP

    Radiometric approach for the detection of picophytoplankton assemblages across oceanic fronts

    Get PDF
    Cell abundances of Prochlorococcus, Synechococcus, and autotrophic picoeukaryotes were estimated in surface waters using principal component analysis (PCA) of hyperspectral and multispectral remote-sensing reflectance data. This involved the development of models that employed multilinear correlations between cell abundances across the Atlantic Ocean and a combination of PCA scores and sea surface temperatures. The models retrieve high Prochlorococcus abundances in the Equatorial Convergence Zone and show their numerical dominance in oceanic gyres, with decreases in Prochlorococcus abundances towards temperate waters where Synechococcus flourishes, and an emergence of picoeukaryotes in temperate waters. Fine-scale in-situ sampling across ocean fronts provided a large dynamic range of measurements for the training dataset, which resulted in the successful detection of fine-scale Synechococcus patches. Satellite implementation of the models showed good performance (R2 > 0.50) when validated against in-situ data from six Atlantic Meridional Transect cruises. The improved relative performance of the hyperspectral models highlights the importance of future high spectral resolution satellite instruments, such as the NASA PACE mission’s Ocean Color Instrument, to extend our spatiotemporal knowledge about ecologically relevant phytoplankton assemblages

    Approach and Avoidance Tendencies in Spider Fearful Children: The Approach-Avoidance Task

    Get PDF
    Fear in children is associated with the tendency to avoid situations related to the fear. In this study, the Approach-Avoidance Task (AAT) was evaluated as a test of automatic behavioral avoidance tendencies in children. A sample of 195 children aged between 9 and 12 years completed an AAT, a Behavioral Assessment Task (BAT), and two spider fear questionnaires. The results indicate that all children showed an automatic avoidance tendency in response to spider pictures, but not pictures of butterflies or neutral pictures. Girls who reported more fear of spiders on the self-reports and behaved more anxiously during the BAT also showed a greater avoidance tendency in the AAT. These relationships were absent in boys

    The ESCAPE project : Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

    Get PDF
    In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche a l'Operationnel a Meso-Echelle) and ALADIN (Aire Limitee Adaptation Dynamique Developpement International); and COSMO-EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU-GPU arrangements
    • 

    corecore