2,713 research outputs found

    Microstructure and strength of metals processed by severe plastic deformation

    Get PDF
    The microstructure of f.c.c. metals (Al, Cu, Ni) and alloys (Al-Mg) processed by severe plastic deformation (SPD) methods is studied by X-ray diffraction line profile analysis. It is shown that the crystallite size and the dislocation density saturate with increasing strain. Furthermore, the Mg addition promotes efficiently a reduction of the crystallite size and an increase of the dislocation density in Al during the SPD process. The yield strength correlates well with that calculated from the dislocation density using the Taylor equation, thereby indicating that the main strengthening mechanism in both pure metals and alloys is the interaction between dislocations

    Evolving DNA motifs to predict GeneChip probe performance

    Get PDF
    Background: Affymetrix High Density Oligonuclotide Arrays (HDONA) simultaneously measure expression of thousands of genes using millions of probes. We use correlations between measurements for the same gene across 6685 human tissue samples from NCBI's GEO database to indicated the quality of individual HG-U133A probes. Low correlation indicates a poor probe. Results: Regular expressions can be automatically created from a Backus-Naur form (BNF) context-free grammar using strongly typed genetic programming. Conclusion: The automatically produced motif is better at predicting poor DNA sequences than an existing human generated RE, suggesting runs of Cytosine and Guanine and mixtures should all be avoided. © 2009 Langdon and Harrison; licensee BioMed Central Ltd

    Simple Max-Min Ant Systems and the Optimization of Linear Pseudo-Boolean Functions

    Full text link
    With this paper, we contribute to the understanding of ant colony optimization (ACO) algorithms by formally analyzing their runtime behavior. We study simple MAX-MIN ant systems on the class of linear pseudo-Boolean functions defined on binary strings of length 'n'. Our investigations point out how the progress according to function values is stored in pheromone. We provide a general upper bound of O((n^3 \log n)/ \rho) for two ACO variants on all linear functions, where (\rho) determines the pheromone update strength. Furthermore, we show improved bounds for two well-known linear pseudo-Boolean functions called OneMax and BinVal and give additional insights using an experimental study.Comment: 19 pages, 2 figure

    Evolving text classification rules with genetic programming

    Get PDF
    We describe a novel method for using genetic programming to create compact classification rules using combinations of N-grams (character strings). Genetic programs acquire fitness by producing rules that are effective classifiers in terms of precision and recall when evaluated against a set of training documents. We describe a set of functions and terminals and provide results from a classification task using the Reuters 21578 dataset. We also suggest that the rules may have a number of other uses beyond classification and provide a basis for text mining applications

    Influence of inhomogeneity on mechanical properties of commercially pure titanium processed by HPT

    Get PDF
    Already for fifteen years many researchers have been trying to discover metallic materials with unusual combinations of strength and ductility: with high strength and enhanced ductility . This combination may be achieved through different ways: alloying, nanostructuring, etc. This report is an attempt to analyze the influence of inhomogeneity of different types (structural, phase and space) on mechanical properties of commercially pure ti tanium (bulk and powder) subjected to high- pressure torsion. Experimental results for HPT bulk and powder titanium have demonstrated that mechanical behavior of CP titanium strongly depends on phase inhomogeneity (alpha + omega phases), structural inhomoge neity (bimodal grain size distribution) and space inhomogeneity (retained porosity) in case of cold consolidated Ti powder. High strength in HPT bulk titanium due to the formation of hard omega phase during HPT processing at room temperature was detected. The strong omega phase transforms back to nanograined alpha phase domains during short annealing at elevated temperature. HPT consolidation of titanium powder leads to the formation of brittle specimens showing high strength but almost zero plasticityPeer ReviewedPostprint (author's final draft

    Expression of steroid receptor coactivator 3 in ovarian epithelial cancer is a poor prognostic factor and a marker for platinum resistance

    Get PDF
    BACKGROUND: Steroid receptor coactivator 3 (SRC3) is an important coactivator of a number of transcription factors and is associated with a poor outcome in numerous tumours. Steroid receptor coactivator 3 is amplified in 25% of epithelial ovarian cancers (EOCs) and its expression is higher in EOCs compared with non-malignant tissue. No data is currently available with regard to the expression of SRC-3 in EOC and its influence on outcome or the efficacy of treatment. METHODS: Immunohistochemistry was performed for SRC3, oestrogen receptor-α, HER2, PAX2 and PAR6, and protein expression was quantified using automated quantitative immunofluorescence (AQUA) in 471 EOCs treated between 1991 and 2006 with cytoreductive surgery followed by first-line treatment platinum-based therapy, with or without a taxane. RESULTS: Steroid receptor coactivator 3 expression was significantly associated with advanced stage and was an independent prognostic marker. High expression of SRC3 identified patients who have a significantly poorer survival with single-agent carboplatin chemotherapy, while with carboplatin/paclitaxel treatment such a difference was not seen. CONCLUSION: Steroid receptor coactivator 3 is a poor prognostic factor in EOCs and appears to identify a population of patients who would benefit from the addition of taxanes to their chemotherapy regimen, due to intrinsic resistance to platinum therapy

    Consequences of fish kills for long-term trophic structure in shallow lakes: implications for theory and restoration

    Get PDF
    Fish kills are a common occurrence in shallow, eutrophic lakes, but their ecological consequences, especially in the long-term, are poorly understood. We studied the decadal-scale response of two UK shallow lakes to fish kills using a palaeolimnological approach. Eutrophic and turbid Barningham Lake experienced two fish kills in the early 1950s and late 1970s with fish recovering after both events, whereas less eutrophic, macrophyte-dominated Wolterton Lake experienced one kill event in the early 1970s from which fish failed to recover. Our palaeo-data show fish-driven trophic cascade effects across all trophic levels (covering benthic and pelagic species) in both lakes regardless of pre-kill macrophyte coverage and trophic status. In turbid Barningham Lake, similar to long-term studies of biomanipulations in other eutrophic lakes, effects at the macrophyte-level are shown to be temporary after the first kill (c.20 years) and non-existent after the second kill. In plant-dominated Wolterton Lake permanent fish disappearance failed to halt a long-term pattern of macrophyte community change (e.g. loss of charophytes and over-wintering macrophyte species) symptomatic of eutrophication. Important implications for theory and restoration ecology arise from our study. Firstly, our data support ideas of slow eutrophication-driven change in shallow lakes where perturbations are not necessary prerequisites for macrophyte loss. Secondly, the study emphasises a key need for lake managers to reduce external nutrient-loading if sustainable and long-term lake restoration is to be achieved. Our research highlights the enormous potential of multi-indicator palaeolimnology and alludes to an important need to consider potential fish kill signatures when interpreting results
    corecore