42 research outputs found

    Personal identity (de)formation among lifestyle travellers: A double-edged sword?

    Get PDF
    This article explores the personal identity work of lifestyle travellers – individuals for whom extended leisure travel is a preferred lifestyle that they return to repeatedly. Qualitative findings from in-depth semi-structured interviews with lifestyle travellers in northern India and southern Thailand are interpreted in light of theories on identity formation in late modernity that position identity as problematic. It is suggested that extended leisure travel can provide exposure to varied cultural praxes that may contribute to a sense of social saturation. Whilst a minority of the respondents embraced a saturation of personal identity in the subjective formation of a cosmopolitan cultural identity, several of the respondents were paradoxically left with more identity questions than answers as the result of their travels

    Tourism and transformation: negotiating metaphors, experiencing change

    Get PDF
    WOS:000338007000001 (NÂș de Acesso Web of Science)The article introduces this special issue on tourism and transformation. After offering a brief review of the place and significance of ‘transformation’ in social sciences studies of tourism – from ‘impact studies’ to ethnographies of tourists and, more recently, ‘tourist media studies’ – we propose to take one step further and focus our attention on the performativity and reflexivity of ‘transformation’. Our main argument is that much may be gained analytically by considering how notions and experiences of transformation are addressed, negotiated and purposefully deployed in tourism contexts. We conclude with an outline of each of the contributions to this special issue, stressing that the collection re-opens the issue of transformation in tourism and provides new insights into how experiences-turned metaphors and metaphors-turnedexperiences influence both the travel experience and the development of theory

    International tourism : identity and change

    No full text
    x, 246 p. ; 24 cm

    Elaboration of Nano-SiC / Carbon Nanotubes Composites: Mechanical, Thermal and Electric Properties

    Get PDF
    International audienceCeramic carbides materials such as SiC, due to their refractory nature and their low neutron absorption are believed to be promising candidates for high temperature nuclear or aerospace applications. However, SiC brittleness has limited its structural application. In order to overcome this drawback, a reduction of grain size below 100 nm is expected to enhance mechanical properties. On the other hand, the grain downsizing should result in a strong decrease of the thermal conductivity because of the enhanced phonon scattering at the grain boundaries. In order to counteract this effect, multiwall carbon nanotubes (MWCNTs) could be of great interest because of their interesting thermal properties. Moreover, MWCNTs show a strong toughness which should also help to enhance the mechanical properties as reviewed by several authors. We report here the study of the elaboration of such nanoSiC / MWCNTs composites using gas-phase synthesized nano-objects together with the related thermal, electric and mechanical properties. For this study, the starting nanoscale building blocks (nanoparticles and nanotubes) were synthesized by gas phases processes. ÎČ-SiC nanopowders with a mean particle smaller than 20 nm were obtained by a laser assisted CVD flow process, namely laser pyrolysis, using a CO2 laser to decompose the gaseous precursors (silane and acetylene). MWCNTs several hundred microns in length were grownas carpets on substratesby continuous catalytic CVDusing an aerosol oftoluene and ferrocene used as carbon and catalytic iron precursors, respectively. Dispersion of SiC nanopowders was obtained in an aqueous medium under magnetic stirring with dedicated dispersing agent. Several samples were prepared, differing in surface composition (C or Si excess) and sintering additives content (from 0 to few wt%). MWCNTs were dispersed by means of an ultrasonic probe and subsequently mixed with SiC slurries with different concentrations. Green bodies were then prepared by slip-casting.In order to avoid grain growth while keeping satisfying densification, spark plasma sintering(SPS)was used for this study. Thanks to this fast sintering process, SiC matrix grain size was kept under 100 nm while final densities were higher than 96%. Finally, samples with different chemical (Si, O, C) compositions and MWCNTs contents were subjected to mechanical characterization (hardness, toughness), resistivity,and thermal conductivity measurements with the aim of correlating the final microstructures to the mechanical, electricand thermal behavior
    corecore