152 research outputs found
Ultrastructural Aspects of Unilateral Interspecific Incompatibility between Lycopersicum Peruvianum and L. Esculentum
SUMMARYObservations have been made, at the electron microscope, of the pollen tubes present in the styles of Lycopersicum esculentum and L. peruvianum after reciprocal crosses between the two species.The unilateral incompatibility barrier which isolates the two species when L. peruvianum is used as pistillate parent was then compared to the processes of pollen tube rejection which have been recently analysed (J. Cell Sci., 1972) after self-pollination in this self-incompatible species. Such a comparison, which was also carried out by means of fluorescence techniques, has permitted to find out that for both types of incompatibility the rejection process was characterised by a progressive disappearance of the callose-rich inner wall of the pollen tube and by an accumulation of bi-partite particles in the tube cytoplasm.In the case of unilateral incompatibility, however, the tube outer wall is gradually disaggregated while the callosic inner wall remains quite thick at the tube apex, becoming thinner and fin..
Exercise, immune system, nutrition, respiratory and cardiovascular diseases during COVID-19: A complex combination
Coronaviruses (CoVs) represent a large family of RNA viruses that can infect different living species, posing a global threat to human health. CoVs can evade the immune response, replicate within the host, and cause a rapid immune compromise culminating in severe acute respiratory syndrome. In humans, the immune system functions are influenced by physical activity, nutrition, and the absence of respiratory or cardiovascular diseases. This review provides an in-depth study between the interactions of the immune system and coronaviruses in the host to defend against CoVs disease
Recommended from our members
Development of an integrated genome informatics, data management and workflow infrastructure: a toolbox for the study of complex disease genetics.
The genetic dissection of complex disease remains a significant challenge. Sample-tracking and the recording, processing and storage of high-throughput laboratory data with public domain data, require integration of databases, genome informatics and genetic analyses in an easily updated and scaleable format. To find genes involved in multifactorial diseases such as type 1 diabetes (T1D), chromosome regions are defined based on functional candidate gene content, linkage information from humans and animal model mapping information. For each region, genomic information is extracted from Ensembl, converted and loaded into ACeDB for manual gene annotation. Homology information is examined using ACeDB tools and the gene structure verified. Manually curated genes are extracted from ACeDB and read into the feature database, which holds relevant local genomic feature data and an audit trail of laboratory investigations. Public domain information, manually curated genes, polymorphisms, primers, linkage and association analyses, with links to our genotyping database, are shown in Gbrowse. This system scales to include genetic, statistical, quality control (QC) and biological data such as expression analyses of RNA or protein, all linked from a genomics integrative display. Our system is applicable to any genetic study of complex disease, of either large or small scale.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Functional Connectivity Analyses in Imaging Genetics: Considerations on Methods and Data Interpretation
Functional magnetic resonance imaging (fMRI) can be combined with genotype assessment to identify brain systems that mediate genetic vulnerability to mental disorders (“imaging genetics”). A data analysis approach that is widely applied is “functional connectivity”. In this approach, the temporal correlation between the fMRI signal from a pre-defined brain region (the so-called “seed point”) and other brain voxels is determined. In this technical note, we show how the choice of freely selectable data analysis parameters strongly influences the assessment of the genetic modulation of connectivity features. In our data analysis we exemplarily focus on three methodological parameters: (i) seed voxel selection, (ii) noise reduction algorithms, and (iii) use of additional second level covariates. Our results show that even small variations in the implementation of a functional connectivity analysis can have an impact on the connectivity pattern that is as strong as the potential modulation by genetic allele variants. Some effects of genetic variation can only be found for one specific implementation of the connectivity analysis. A reoccurring difficulty in the field of psychiatric genetics is the non-replication of initially promising findings, partly caused by the small effects of single genes. The replication of imaging genetic results is therefore crucial for the long-term assessment of genetic effects on neural connectivity parameters. For a meaningful comparison of imaging genetics studies however, it is therefore necessary to provide more details on specific methodological parameters (e.g., seed voxel distribution) and to give information how robust effects are across the choice of methodological parameters
Seasonality of Plasmodium falciparum transmission: a systematic review
This article is fully open access and the published version is available free of charge from the jounal website.http://www.malariajournal.com/content/14/1/343Background Although Plasmodium falciparum transmission frequently exhibits seasonal patterns, the drivers of malaria seasonality are often unclear. Given the massive variation in the landscape upon which transmission acts, intra-annual fluctuations are likely influenced by different factors in different settings. Further, the presence of potentially substantial inter-annual variation can mask seasonal patterns; it may be that a location has “strongly seasonal” transmission and yet no single season ever matches the mean, or synoptic, curve. Accurate accounting of seasonality can inform efficient malaria control and treatment strategies. In spite of the demonstrable importance of accurately capturing the seasonality of malaria, data required to describe these patterns is not universally accessible and as such localized and regional efforts at quantifying malaria seasonality are disjointed and not easily generalized. Methods The purpose of this review was to audit the literature on seasonality of P. falciparum and quantitatively summarize the collective findings. Six search terms were selected to systematically compile a list of papers relevant to the seasonality of P. falciparum transmission, and a questionnaire was developed to catalogue the manuscripts. Results and discussion 152 manuscripts were identified as relating to the seasonality of malaria transmission, deaths due to malaria or the population dynamics of mosquito vectors of malaria. Among these, there were 126 statistical analyses and 31 mechanistic analyses (some manuscripts did both). Discussion Identified relationships between temporal patterns in malaria and climatological drivers of malaria varied greatly across the globe, with different drivers appearing important in different locations. Although commonly studied drivers of malaria such as temperature and rainfall were often found to significantly influence transmission, the lags between a weather event and a resulting change in malaria transmission also varied greatly by location. Conclusions The contradicting results of studies using similar data and modelling approaches from similar locations as well as the confounding nature of climatological covariates underlines the importance of a multi-faceted modelling approach that attempts to capture seasonal patterns at both small and large spatial scales. Keywords: Plasmodium falciparum ; Seasonality; Climatic driversAcknowledgements
This work was supported by the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Science and Technology Directory, Department of Homeland Security, and Fogarty International Center, National Institutes of Health. DLS is funded by a grant from the Bill & Melinda Gates Foundation (OPP1110495), which also supports RCR. PMA is grateful to the University of Utrecht for supporting him with The Belle van Zuylen Chair. PWG is a Career Development Fellow (K00669X) jointly funded by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement and receives support from the Bill and Melinda Gates Foundation (OPP1068048, OPP1106023)
Statistical Inference for Multi-Pathogen Systems
There is growing interest in understanding the nature and consequences of interactions among infectious agents. Pathogen interactions can be operational at different scales, either within a co-infected host or in host populations where they co-circulate, and can be either cooperative or competitive. The detection of interactions among pathogens has typically involved the study of synchrony in the oscillations of the protagonists, but as we show here, phase association provides an unreliable dynamical fingerprint for this task. We assess the capacity of a likelihood-based inference framework to accurately detect and quantify the presence and nature of pathogen interactions on the basis of realistic amounts and kinds of simulated data. We show that when epidemiological and demographic processes are well understood, noisy time series data can contain sufficient information to allow correct inference of interactions in multi-pathogen systems. The inference power is dependent on the strength and time-course of the underlying mechanism: stronger and longer-lasting interactions are more easily and more precisely quantified. We examine the limitations of our approach to stochastic temporal variation, under-reporting, and over-aggregation of data. We propose that likelihood shows promise as a basis for detection and quantification of the effects of pathogen interactions and the determination of their (competitive or cooperative) nature on the basis of population-level time-series data
Forcing Versus Feedback: Epidemic Malaria and Monsoon Rains in Northwest India
Malaria epidemics in regions with seasonal windows of transmission can vary greatly in size from year to year. A central question has been whether these interannual cycles are driven by climate, are instead generated by the intrinsic dynamics of the disease, or result from the resonance of these two mechanisms. This corresponds to the more general inverse problem of identifying the respective roles of external forcings vs. internal feedbacks from time series for nonlinear and noisy systems. We propose here a quantitative approach to formally compare rival hypotheses on climate vs. disease dynamics, or external forcings vs. internal feedbacks, that combines dynamical models with recently developed, computational inference methods. The interannual patterns of epidemic malaria are investigated here for desert regions of northwest India, with extensive epidemiological records for Plasmodium falciparum malaria for the past two decades. We formulate a dynamical model of malaria transmission that explicitly incorporates rainfall, and we rely on recent advances on parameter estimation for nonlinear and stochastic dynamical systems based on sequential Monte Carlo methods. Results show a significant effect of rainfall in the inter-annual variability of epidemic malaria that involves a threshold in the disease response. The model exhibits high prediction skill for yearly cases in the malaria transmission season following the monsoonal rains. Consideration of a more complex model with clinical immunity demonstrates the robustness of the findings and suggests a role of infected individuals that lack clinical symptoms as a reservoir for transmission. Our results indicate that the nonlinear dynamics of the disease itself play a role at the seasonal, but not the interannual, time scales. They illustrate the feasibility of forecasting malaria epidemics in desert and semi-arid regions of India based on climate variability. This approach should be applicable to malaria in other locations, to other infectious diseases, and to other nonlinear systems under forcing
- …