4,074 research outputs found

    A Statement on the Appropriate Role for Research and Development in Climate Policy

    Get PDF
    This statement is issued by a group of economists and scientists which met at Stanford University on October 18, 2008 to discuss the role of research and development (R&D) in developing effective policies for addressing the adverse potential consequences of climate change. We believe that climate change is a serious issue that governments need to address. We also believe that research and development needs to be a central part of governments’ strategies for responding to this challenge. Solutions to manage long-term risks will require the development and global deployment of a range of technologies for energy supply and end-use, land-use, agriculture and adaptation that are not currently commercial. A key potential benefit of focused scientific and technological research and development investment is that it could dramatically reduce the cost of restricting greenhouse gas emissions by encouraging the development of more affordable, better performing technologies.

    Di- and Trinuclear Mixed-Valence Copper Amidinate Complexes from Reduction of Iodine

    Get PDF
    Molecular examples of mixed-valence copper complexes through chemical oxidation are rare but invoked in the mechanism of substrate activation, especially oxygen, in copper-containing enzymes. To examine the cooperative chemistry between two metals in close proximity to each other we began studying the reactivity of a dinuclear Cu(I) amidinate complex. The reaction of [(2,6-Me2C6H3N)2C(H)]2Cu2, 1, with I2 in tetrahydrofuran (THF), CH3CN, and toluene affords three new mixed-valence copper complexes [(2,6-Me2C6H3N)2C(H)]2Cu2(μ2-I3)(THF)2, 2, [(2,6-Me2C6H3N)2C(H)]2Cu2(μ2-I) (NCMe)2, 3, and [(2,6-Me2C6H3N)2C(H)]3Cu3(μ3-I)2, 4, respectively. The first two compounds were characterized by UV-vis and electron paramagnetic resonance spectroscopies, and their molecular structure was determined by X-ray crystallography. Both di- and trinuclear mixed-valence intermediates were characterized for the reaction of compound 1 to compound 4, and the molecular structure of 4 was determined by X-ray crystallography. The electronic structure of each of these complexes was also investigated using density functional theory

    Identification of Mammalian Mediator Subunits with Similarities to Yeast Mediator Subunits Srb5, Srb6, Med11, and Rox3

    Get PDF
    The Mediator is a multiprotein coactivator required for activation of RNA polymerase II transcription by DNA binding transactivators. We recently identified a mammalian homologue of yeast Mediator subunit Med8 and partially purified a Med8-containing Mediator complex from rat liver nuclei (Brower, C. S., Sato, S., Tomomori-Sato, C., Kamura, T., Pause, A., Stearman, R., Klausner, R. D., Malik, S., Lane, W. S., Sorokina, I., Roeder, R. G., Conaway, J. W., and Conaway, R. C. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 10353-10358). Analysis of proteins present in the most highly purified Med8-containing fractions by tandem mass spectrometry led to the identification of many known mammalian Mediator subunits, as well as four potential Mediator subunits exhibiting sequence similarity to yeast Mediator subunits Srb5, Srb6, Med11, and Rox3. Here we present direct biochemical evidence that these four proteins are bona fide mammalian Mediator subunits. In addition, we identify direct pairwise binding partners of these proteins among the known mammalian Mediator subunits. Taken together, our findings identify a collection of novel mammalian Mediator subunits and shed new light on the underlying architecture of the mammalian Mediator complex

    Constraints on Lorentz violation from clock-comparison experiments

    Get PDF
    Constraints from clock-comparison experiments on violations of Lorentz and CPT symmetry are investigated in the context of a general Lorentz-violating extension of the standard model. The experimental signals are shown to depend on the atomic and ionic species used as clocks. Certain experiments usually regarded as establishing comparable bounds are in this context sensitive to different types of Lorentz violation. Some considerations relevant to possible future measurements are presented. All these experiments are potentially sensitive to Lorentz-violating physics at the Planck scale.Comment: accepted for publication in Physical Review D; scheduled for issue of December 1, 199

    CPT and Lorentz tests with muons

    Get PDF
    Precision experiments with muons are sensitive to Planck-scale CPT and Lorentz violation that is undetectable in other tests. Existing data on the muonium ground-state hyperfine structure and on the muon anomalous magnetic moment could be analyzed to provide dimensionless figures of merit for CPT and Lorentz violation at the levels of 4×10214\times 10^{-21} and 102310^{-23}.Comment: 4 pages, accepted for publication in Physical Review Letter
    corecore