1,126 research outputs found

    Occipital gamma-aminobutyric acid and glutamate-glutamine alterations in major depressive disorder: An mrs study and meta-analysis

    Get PDF
    The neurotransmitters GABA and glutamate have been suggested to play a role in Major Depressive Disorder (MDD) through an imbalance between cortical inhibition and excitation. This effect has been highlighted in higher brain areas, such as the prefrontal cortex, but has also been posited in basic sensory cortices. Based on this, magnetic resonance spectroscopy (MRS) was used to investigate potential changes to GABA+ and glutamate+glutamine (Glx) concentrations within the occipital cortex in MDD patients (n = 25) and healthy controls (n = 25). No difference in occipital GABA+ or Glx concentrations, nor in the GABA+/Glx ratio, was found between groups. An analysis of an extended MDD patient and unmatched control dataset (n = 90) found no correlation between metabolite concentrations and depressive symptoms. These results were integrated with prior studies through metabolite-specific meta-analyses, revealing no difference in occipital GABA and Glx concentrations between patients and controls. An effect of publication year on GABA group differences was found, suggesting that previously reported results may have been artifacts of measurement accuracy. Taken together, our results suggest that, contrary to some prior reports, MRS measurements of occipital GABA and Glx do not differ between MDD patients and controls

    Vascular-metabolic and GABAergic Inhibitory Correlates of Neural Variability Modulation. A Combined fMRI and PET Study

    Get PDF
    Neural activity varies continually from moment to moment. Such temporal variability (TV) has been highlighted as a functionally specific brain property playing a fundamental role in cognition. We sought to investigate the mechanisms involved in TV changes between two basic behavioral states, namely having the eyes open (EO) or eyes closed (EC) in vivo in humans. To these ends we acquired BOLD fMRI, ASL, and [18F]-fluoro-deoxyglucose PET in a group of healthy participants (n = 15), along with BOLD fMRI and [18F]-flumazenil PET in a separate group (n = 19). Focusing on an EO- vs EC-sensitive region in the occipital cortex (identified in an independent sample), we show that TV is constrained in the EO condition compared to EC. This reduction is correlated with an increase in energy consumption and with regional GABAA receptor density. This suggests that the modulation of TV by behavioral state involves an increase in overall neural activity that is related to an increased effect from GABAergic inhibition in addition to any excitatory changes. These findings contribute to our understanding of the mechanisms underlying activity variability in the human brain and its control

    Indication of dynamic neurovascular coupling from inconsistency between EEG and fMRI indices across sleep–wake states

    Get PDF
    Neurovascular coupling (NVC), the transient regional hyperemia following the evoked neuronal responses, is the basis of blood oxygenation level-dependent techniques and is generally adopted across physiological conditions, including the intrinsic resting state. However, the possibility of neurovascular dissociations across physiological alterations is indicated in the literature. To examine the NVC stability across sleep–wake states, we used electroencephalography (EEG) as the index of neural activity and functional magnetic resonance imaging (fMRI) as the measure of cerebrovascular response. Eight healthy adults were recruited for simultaneous EEG-fMRI recordings in nocturnal sleep. We compared the cross-modality (EEG vs. fMRI) consistency of functional indices (spectral amplitude and functional connectivity) among five states of wakefulness and sleep (state effect). We also segregated the brain into three main partitions (anterior, middle and posterior) for spatial assessments (regional effect). Significant state effects were found on δ, α and fMRI indices and regional effects on the α and fMRI indices. However, the cross-state EEG changes in spectral amplitude and functional connectivity did not consistently match the changes in the fMRI indices across sleep–wake states. In spectral amplitude, the δ band peaked at the N3 stage for all brain regions, while the fMRI fluctuation amplitude peaked at the N2 stage in the central and posterior regions. In regional connectivity, the inter-hemispheric connectivity of the δ band peaked at the N3 stage for all regions, but the bilateral fMRI connectivity showed the state changes in the anterior and central regions. The cross-modality inconsistencies across sleep–wake states provided preliminary evidence that the neurovascular relationship may not change in a linear consistency during NREM sleep. Thus, caution shall be exercised when applying the NVC presumption to investigating sleep/wake transitions, even among healthy young adults

    An Inner Centromere Protein that Stimulates the Microtubule Depolymerizing Activity of a KinI Kinesin

    Get PDF
    AbstractMitosis requires precise control of microtubule dynamics. The KinI kinesin MCAK, a microtubule depolymerase, is critical for this regulation. In a screen to discover previously uncharacterized microtubule-associated proteins, we identified ICIS, a protein that stimulates MCAK activity in vitro. Consistent with this biochemical property, blocking ICIS function in Xenopus extracts with antibodies caused excessive microtubule growth and inhibited spindle formation. Prior to anaphase, ICIS localized in an MCAK-dependent manner to inner centromeres, the chromosomal region located in between sister kinetochores. From Xenopus extracts, ICIS coimmunoprecipitated MCAK and the inner centromere proteins INCENP and Aurora B, which are thought to promote chromosome biorientation. By immunoelectron microscopy, we found that ICIS is present on the surface of inner centromeres, placing it in an ideal location to depolymerize microtubules associated laterally with inner centromeres. At inner centromeres, MCAK-ICIS may destabilize these microtubules and provide a mechanism that prevents kinetochore-microtubule attachment errors

    Depressive rumination is correlated with brain responses during self-related processing

    Get PDF
    Background: Rumination, a tendency to focus on negative self-related thoughts, is a central symptom of depression. Studying the self-related aspect of such symptoms is challenging because of the need to distinguish self effects from the emotional content of task stimuli. This study employed an emotionally neutral self-related paradigm to investigate possible altered self-processing in depression and its link to rumination. Methods: People with major depressive disorder (n = 25) and controls (n = 25) underwent task-based electro-encephalogram recording. We studied late event-related potentials, along with low-frequency oscillatory power. We compared electroencephalogram metrics between groups and correlated them with depressive symptoms and reported rumination. Results: Participants with major depressive disorder displayed a difference in late positive potentials across frontocentral electrodes between self-related and non-self-related conditions. We found no such difference in controls. The magnitude of this difference was positively correlated with depressive symptoms and reported rumination. Participants with major depressive disorder also had elevated theta oscillation power at central electrodes in self-related conditions, a finding that we did not see in controls. Limitations: Patients with major depressive disorder were medicated at the time of the study. The group studied was primarily female, so the observed effects may have been sex-specific. Conclusion: Rumination appears to be linked to altered self-related processing in depression, independent of stimuli-related emotional confounds. This connection between self-related processing and depression may point to a self disorder as a core component of depression

    Sediment supply and barrier dynamics as driving mechanisms of Holocene coastal change for the southern North Sea basin

    Get PDF
    The combined effects of climate change and human impact lead to regional and local coastal responses that pose major challenges for the future resilience of coastal landscapes, increasing the vulnerability of communities, infrastructure and nature conservation interests. Using the Suffolk coast, southeast England, as a case study, we investigate the importance of sediment supply and barrier dynamics as driving mechanisms of coastal change throughout the Holocene. Litho-, bio- and chronostratigraphic methods are used to decipher the mechanisms of coastal change from the record preserved within coastal stratigraphy. Results suggest that local coastal configuration and sediment supply were the most influential in determining coastal change during the mid- and late Holocene, against a background control of sea-level rise. The importance of sedimentological and morphological factors in shaping Holocene coastal changes in the southern North Sea basin must therefore be considered when using the database of evidence from this region as an analogue for future change under accelerated sea-level rise

    In vitro/in vivo assessment of novel 99mTc-bombesin conjugates in human cancer tissue [abstract]

    Get PDF
    Abstract only availableReceptor-specific, radiolabeled peptides are becoming increasingly popular as targeting vectors for the development of new diagnostic radiopharmaceuticals. The over-expression of certain receptors such as the gastrin releasing peptide receptor (GRPr) on human cancer cells makes this method of drug development a viable tool for tumor targeting in vivo. Breast, pancreatic, prostate, gastric, colon, and small-cell lung cancer have demonstrated GRPr expression. In this project, we have conjugated a diaminoproionic acid (DPR) bifunctional chelator to bombesin (BBN) peptide targeting vector by solid phase peptide synthesis. BBN is an analogue of human gastrin releasing peptide (GRP) that binds to the GRPr with high affinity and specificity. Conjugates of the general structure [DPR-(X)-BBN(7-14)NH2] (X = a series of amino acid pharmacokinetic modifiers) were purified by reverse-phase high-performance liquid chromatography and characterized by electrospray-ionization mass spectrometry. Radiolabeling investigations of with fac-[99mTc(CO)3(H2O)3]+ (IsolinkÂŽ) provided for metallated conjugates of the following general structure: [99mTc(CO)3-DPR-(X)-BBN(7-14)NH2]. These new conjugates demonstrated the ability to target specific human tumors in rodent models. Subsequent radiolabeling studies of [DPR-(X)-BBN(7-14)NH2] with fac-[188Re(CO)3(H2O)3]+, the therapeutic surrogate precursor of Tc-99m, have given us the potential to treat specific human tumors via these new targeting vectors. Detailed radiolabeling protocols, in vitro cell binding studies, and in vivo biodistribution assays will be reported.Harry S. Truman Memorial VA Hospita
    • …
    corecore