37 research outputs found

    Clinical, Epidemiologic, Histopathologic and Molecular Features of an Unexplained Dermopathy

    Get PDF
    BACKGROUND: Morgellons is a poorly characterized constellation of symptoms, with the primary manifestations involving the skin. We conducted an investigation of this unexplained dermopathy to characterize the clinical and epidemiologic features and explore potential etiologies. METHODS: A descriptive study was conducted among persons at least 13 years of age and enrolled in Kaiser Permanente Northern California (KPNC) during 2006-2008. A case was defined as the self-reported emergence of fibers or materials from the skin accompanied by skin lesions and/or disturbing skin sensations. We collected detailed epidemiologic data, performed clinical evaluations and geospatial analyses and analyzed materials collected from participants' skin. RESULTS: We identified 115 case-patients. The prevalence was 3.65 (95% CI = 2.98, 4.40) cases per 100,000 enrollees. There was no clustering of cases within the 13-county KPNC catchment area (p = .113). Case-patients had a median age of 52 years (range: 17-93) and were primarily female (77%) and Caucasian (77%). Multi-system complaints were common; 70% reported chronic fatigue and 54% rated their overall health as fair or poor with mean Physical Component Scores and Mental Component Scores of 36.63 (SD = 12.9) and 35.45 (SD = 12.89), respectively. Cognitive deficits were detected in 59% of case-patients and 63% had evidence of clinically significant somatic complaints; 50% had drugs detected in hair samples and 78% reported exposure to solvents. Solar elastosis was the most common histopathologic abnormality (51% of biopsies); skin lesions were most consistent with arthropod bites or chronic excoriations. No parasites or mycobacteria were detected. Most materials collected from participants' skin were composed of cellulose, likely of cotton origin. CONCLUSIONS: This unexplained dermopathy was rare among this population of Northern California residents, but associated with significantly reduced health-related quality of life. No common underlying medical condition or infectious source was identified, similar to more commonly recognized conditions such as delusional infestation

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Alveolar Macrophages Infected with Ames or Sterne Strain of <i>Bacillus anthracis</i> Elicit Differential Molecular Expression Patterns

    Get PDF
    <div><p>Alveolar macrophages (AMs) phagocytose <i>Bacillus anthracis</i> following inhalation and induce the production of pro-inflammatory cytokines and chemokines to mediate the activation of innate immunity. Ames, the virulent strain of <i>B. anthracis</i>, contains two plasmids that encode the antiphagocytic poly-Îł-d-glutamic acid capsule and the lethal toxin. The attenuated Sterne strain of <i>B. anthracis</i>, which lacks the plasmid encoding capsule, is widely adapted as a vaccine strain. Although differences in the outcome of infection with the two strains may have originated from the presence or absence of an anti-phagocytic capsule, the disease pathogenesis following infection will be manifested via the host responses, which is not well understood. To gain understanding of the host responses at cellular level, a microarray analysis was performed using primary rhesus macaque AMs infected with either Ames or Sterne spores. Notably, 528 human orthologs were identified to be differentially expressed in AMs infected with either strain of the <i>B. anthracis.</i> Meta-analyses revealed genes differentially expressed in response to <i>B. anthracis</i> infection were also induced upon infections with multiple pathogens such as <i>Francisella Novicida</i> or <i>Staphylococcus aureus</i>. This suggests the existence of a common molecular signature in response to pathogen infections. Importantly, the microarray and protein expression data for certain cytokines, chemokines and host factors provide further insights on how cellular processes such as innate immune sensing pathways, anti-apoptosis versus apoptosis may be differentially modulated in response to the virulent or vaccine strain of <i>B. anthracis</i>. The reported differences may account for the marked difference in pathogenicity between these two strains.</p></div

    Overlap between the genes identified from current study and studies referenced.

    No full text
    <p>Explanation of the column headings in table are as follows: Pathogens: name of the pathogen used in the referenced microarray studies; # of overlapping genes: the number of genes that are overlapping between the current study and the referenced studies; Cells used in the study: the type of cells used in the referenced microarray studies; Selected Overlapping Genes: selected gene symbols that are overlapping between the two studies; P-value: the P-value of the overlap; PMID or GEO ID: the reference of the published microarray studies.</p

    Microarray analyses identified 528 human orthologs which were differentially expressed between Ames and Sterne infected AMs.

    No full text
    <p>AMs obtained from five rhesus macaque donors were infected with Ames or Sterne spores at an MOI of 10 for indicated time points. Total mRNAs were purified and hybridized to rhesus macaque cDNA microarrays. “Ames vs Sterne” bar depicts the ratio of gene expressions (in logarithmic scale) between Ames-infected AMs to Sterne-infected counterparts. “Ames” and “Sterne” bar depict fold change of a gene expression (in logarithmic scale) by normalizing Ames or Sterne treated AMs with the 0 h time point. The level of fold changes are colored coded, where red stands for high values (>1) and blue for low fold changes (<1). To highlight statistically significant changes for “Ames vs. Sterne” for the ease of visualization, we decreased the contrast by three folds for the portion of the heat map, where differential expression is not significant.</p

    Time-dependent kinetic difference in the induction of COX-2 and PGE<sub>2</sub> expression (A) AMs were infected with either Ames or Sterne spores for 90 min, 4 h or 18 h.

    No full text
    <p>Cells were lysed and the mRNA was purified and quantified by real time PCR. Fold expression was calculated by normalizing to time 0. (B) AMs were infected with Ames or Sterne spores at an MOI of 10. The amount of PGE<sub>2</sub> was quantified by ELISA. Data shown in (A) and (B) are representative of n = 3 experiments. Scatter plots are presented as mean ± Standard deviation. P-value is calculated using a paired two tailed Student’s t-test. *represent p-value <0.05.</p
    corecore