1,262 research outputs found

    Principled Evolutionary Algorithm Design and the Kernel Trick

    Get PDF
    We introduce a new approach to the principled design of evolutionary algorithms (EAs) based on kernel methods. We demonstrate how kernel functions, which capture useful problem domain knowledge, can be used to directly construct EA search operators. We test two kernel search operators on a suite of four challenging combinatorial optimization problem domains. These novel kernel search operators exhibit superior performance to some traditional EA search operators

    Principled Evolutionary Algorithm Search Operator Design and the Kernel Trick

    Get PDF
    Configuring an Evolutionary Algorithm (EA) can be a haphazard and inefficient process. An EA practitioner may have to choose between a plethora of search operator types and other parameter settings. In contrast, the goal of EA principled design is a more streamlined and systematic design methodology, which first seeks to better understand the problem domain, and only then uses such acquired insights to guide the choice of parameters and operators

    Search versus Search for Collapsing Electoral Control Types

    Full text link
    Electoral control types are ways of trying to change the outcome of elections by altering aspects of their composition and structure [BTT92]. We say two compatible (i.e., having the same input types) control types that are about the same election system E form a collapsing pair if for every possible input (which typically consists of a candidate set, a vote set, a focus candidate, and sometimes other parameters related to the nature of the attempted alteration), either both or neither of the attempted attacks can be successfully carried out [HHM20]. For each of the seven general (i.e., holding for all election systems) electoral control type collapsing pairs found by Hemaspaandra, Hemaspaandra, and Menton [HHM20] and for each of the additional electoral control type collapsing pairs of Carleton et al. [CCH+ 22] for veto and approval (and many other election systems in light of that paper's Theorems 3.6 and 3.9), both members of the collapsing pair have the same complexity since as sets they are the same set. However, having the same complexity (as sets) is not enough to guarantee that as search problems they have the same complexity. In this paper, we explore the relationships between the search versions of collapsing pairs. For each of the collapsing pairs of Hemaspaandra, Hemaspaandra, and Menton [HHM20] and Carleton et al. [CCH+ 22], we prove that the pair's members' search-version complexities are polynomially related (given access, for cases when the winner problem itself is not in polynomial time, to an oracle for the winner problem). Beyond that, we give efficient reductions that from a solution to one compute a solution to the other. For the concrete systems plurality, veto, and approval, we completely determine which of their (due to our results) polynomially-related collapsing search-problem pairs are polynomial-time computable and which are NP-hard.Comment: The metadata's abstract is abridged due to arXiv.org's abstract-length limit. The paper itself has the unabridged (i.e., full) abstrac

    Separating and Collapsing Electoral Control Types

    Full text link
    [HHM20] discovered, for 7 pairs (C,D) of seemingly distinct standard electoral control types, that C and D are identical: For each input I and each election system, I is a Yes instance of both C and D, or of neither. Surprisingly this had gone undetected, even as the field was score-carding how many std. control types election systems were resistant to; various "different" cells on such score cards were, unknowingly, duplicate effort on the same issue. This naturally raises the worry that other pairs of control types are also identical, and so work still is being needlessly duplicated. We determine, for all std. control types, which pairs are, for elections whose votes are linear orderings of the candidates, always identical. We show that no identical control pairs exist beyond the known 7. We for 3 central election systems determine which control pairs are identical ("collapse") with respect to those systems, and we explore containment/incomparability relationships between control pairs. For approval voting, which has a different "type" for its votes, [HHM20]'s 7 collapses still hold. But we find 14 additional collapses that hold for approval voting but not for some election systems whose votes are linear orderings. We find 1 additional collapse for veto and none for plurality. We prove that each of the 3 election systems mentioned have no collapses other than those inherited from [HHM20] or added here. But we show many new containment relationships that hold between some separating control pairs, and for each separating pair of std. control types classify its separation in terms of containment (always, and strict on some inputs) or incomparability. Our work, for the general case and these 3 important election systems, clarifies the landscape of the 44 std. control types, for each pair collapsing or separating them, and also providing finer-grained information on the separations.Comment: The arXiv.org metadata abstract is an abridged version; please see the paper for the full abstrac

    Stroke Induces Prolonged Changes in Lipid Metabolism, the Liver and Body Composition in Mice

    Get PDF
    Acknowledgements We would like to thank the Biological Services Facility at the University of Manchester for expert animal husbandry and Karen Davies who helped with the MRI. The Histology Facility equipment that was used in this study was purchased by the University of Manchester Strategic Fund. Special thanks goes to Peter Walker for their help with the histology. Funding information This work was supported by the Kohn Foundation, an Edward Bonham Carter Doctoral Scholarship, an EPSRC/MRC Centre for Doctoral Training in Regenerative Medicine studentship grant (EP/L014904/1), and the Medical Research Council (MR/K501311/1).Peer reviewedPublisher PD

    High Pressure Processing of Dairy Foods

    Get PDF
    End of Project ReportThe term High Pressure Processing (HPP) is used to describe the technology whereby products are exposed to very high pressures in the region of 50 - 800 MPa (500 - 8000 Atmospheres). The potential application of HPP in the food industry has gained popularity in recent years, due to developments in the construction of HPP equipment which makes the technology more affordable. Applying HPP to food products results in modifications to interactions between individual components, rates of enzymatic reactions and inactivation of micro-organisms. The first commercial HPP products appeared on the market in 1991 in Japan, where HPP is now being used commercially for products such as jams, sauces, fruit juices, rice cakes and desserts. The pioneering research into the application of HPP to milk dates back to the end of the 19th century. Application of HPP to milk has been shown to modify its gel forming characteristics as well as reducing its microbial load. HPP offers the potential to induce similar effects to those generated by heat on milk protein. Recent reports have also indicated that HPP could accelerate the ripening of cheese. Much of the Irish cheese industry is based on the production of Cheddar cheese, the ripening time for which can vary from 4 - 12 months or more, depending on grade. A substantial portion of the cost associated with Cheddar manufacture is therefore attributed to storage under controlled conditions during ripening. Thus, any technology which may accelerate the ripening of Cheddar cheese while maintaining a balanced flavour and texture is of major economic significance. While food safety is a dominant concern, consumers are increasingly demanding foods that maintain their natural appearance and flavour, while free of chemical preservatives. HPP offers the food industry the possibility of achieving these twin goals as this technology can lead to reduced microbial loads without detrimentally effecting the nutritional or sensory qualities of the product. The development of food ingredients with novel functional properties offers the dairy industry an opportunity to revitalise existing markets and develop new ones. HPP can lead to modifications in the structure of milk components, in particular protein, which may provide interesting possibilities for the development of high value nutritional and functional ingredients. Hence these projects set out to investigate the potential of HPP in the dairy industry and to identify products and processes to which it could be applied.Department of Agriculture, Food and the Marin
    • ā€¦
    corecore