362 research outputs found

    Three channel model of meson-meson scattering and scalar meson spectroscopy

    Get PDF
    New solutions on the scalar -- isoscalar ππ\pi\pi phase shifts are analysed together with previous KKˉK\bar{K} results using a separable potential model of three coupled channels (ππ\pi\pi, KKˉK\bar{K} and an effective 2π2π2\pi 2\pi system). Model parameters are fitted to two sets of solutions obtained in a recent analysis of the CERN-Cracow-Munich measurements of the πpπ+πn\pi^- p_{\uparrow} \to \pi^+ \pi^- n reaction on a polarized target. A relatively narrow (90 -- 180 MeV) scalar resonance f0(14001460)f_0(1400-1460) is found, in contrast to a much broader (Γ500\Gamma \approx 500 MeV) state emerging from the analysis of previous unpolarized target data.Comment: 10 Latex pages + 6 postscript figure

    Unquenching the scalar glueball

    Get PDF
    Computations in the quenched approximation on the lattice predict the lightest glueball to be a scalar in the 1.5-1.8 GeV region. Here we calculate the dynamical effect the coupling to two pseudoscalars has on the mass, width and decay pattern of such a scalar glueball. These hadronic interactions allow mixing with the qqq \overline q scalar nonet, which is largely fixed by the well-established K_0^*(1430). This non-perturbative mixing means that, if the pure gluestate has a width to two pseudoscalar channels of ~100 MeV as predicted on the lattice, the resulting hadron has a width to these channels of only ~30 MeV with a large eta-eta component. Experimental results need to be reanalyzed in the light of these predictions to decide if either the f_0(1500) or an f_0(1710) coincides with this dressed glueball.Comment: 12 pages, LaTex, 3 Postscript figure

    Investigation of airflow around buildings using Large-Eddy Simulations for Unmanned Aircraft Systems applications

    Get PDF
    The ever-increasing demand for Unmanned Aircraft Systems (UAS) has led to the desire for integrating them into spaces in close proximity of humans like dense urban spaces, a reality previously thought of as inconceivable. One of the main concerns to be addressed before its widespread adoption is safety, especially in areas of operation adjacent to structures like buildings. This work investigates the effect of building geometries on the flow field in a simplified urban setup consisting of an isolated building to predict their potential impacts on UAS operations. Unanticipated wind gusts or turbulent flow conditions prevalent around various structures constitute a significant challenge for UAS operations in urban environments. We use Large-Eddy Simulation to better understand the unsteady and highly coherent turbulent flow structures produced by buildings in neutral atmospheric boundary layer flow. Furthermore, we also demonstrate a non-intrusive machine learning methodology to predict flow fields to augment safe wind-aware navigation systems for Unmanned Aerial Vehicles as a first step towards safely integrating UAS into existing aerial infrastructure.Mechanical and Aerospace Engineerin

    Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum

    Get PDF
    We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.Comment: 5 pages with 4 figures. Published as Phys. Rev. Letters 97, 153401 (2006), in slightly different for

    Positron plasma diagnostics and temperature control for antihydrogen production

    Get PDF
    Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss non-destructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Detection of antihydrogen annihilations with a Si-micro-strip and pure CsI detector

    Full text link
    In 2002, the ATHENA collaboration reported the creation and detection of cold (~15 K) antihydrogen atoms [1]. The observation was based on the complete reconstruction of antihydrogen annihilations, simultaneous and spatially correlated annihilations of an antiproton and a positron. Annihilation byproducts are measured with a cylindrically symmetric detector system consisting of two layers of double sided Si-micro-strip modules that are surrounded by 16 rows of 12 pure CsI crystals (13 x 17.5 x 17 mm^3). This paper gives a brief overview of the experiment, the detector system, and event reconstruction. Reference 1. M. Amoretti et al., Nature 419, 456 (2002).Comment: 7 pages, 5 figures; Proceedings for the 8th ICATPP Conference on Astroparticle, Particle, Space Physics, Detectors and Medical Physics Applications (Como, Italy October 2003) to be published by World Scientific (style file included

    Cold-Antimatter Physics

    Full text link
    The CPT theorem and the Weak Equivalence Principle are foundational principles on which the standard description of the fundamental interactions is based. The validity of such basic principles should be tested using the largest possible sample of physical systems. Cold neutral antimatter (low-energy antihydrogen atoms) could be a tool for testing the CPT symmetry with high precision and for a direct measurement of the gravitational acceleration of antimatter. After several years of experimental efforts, the production of low-energy antihydrogen through the recombination of antiprotons and positrons is a well-established experimental reality. An overview of the ATHENA experiment at CERN will be given and the main experimental results on antihydrogen formation will be reviewed.Comment: Proceedings of the XLIII International Meeting on Nuclear Physics, Bormio (Italy), March 13-20 (2005). 10 pages, 4 figures, 1 tabl

    ATHENA -- First Production of Cold Antihydrogen and Beyond

    Full text link
    Atomic systems of antiparticles are the laboratories of choice for tests of CPT symmetry with antimatter. The ATHENA experiment was the first to report the production of copious amounts of cold antihydrogen in 2002. This article reviews some of the insights that have since been gained concerning the antihydrogen production process as well as the external and internal properties of the produced anti-atoms. Furthermore, the implications of those results on future prospects of symmetry tests with antimatter are discussed.Comment: Proc. of the Third Meeting on CPT and Lorentz Symmetry, Bloomington (Indiana), USA, August 2004, edited by V. A. Kostelecky (World Scientific, Singapore). 10 pages, 5 figures, 1 table. Author affiliations cor

    The First Cold Antihydrogen

    Full text link
    Antihydrogen, the atomic bound state of an antiproton and a positron, was produced at low energy for the first time by the ATHENA experiment, marking an important first step for precision studies of atomic antimatter. This paper describes the first production and some subsequent developments.Comment: Invitated Talk at COOL03, International Workshop on Beam Cooling and Related Topics, to be published in NIM
    corecore