63 research outputs found

    Towards a transformative understanding of the ocean’s biological pump: Priorities for future research - Report on the NSF Biology of the Biological Pump Workshop

    Get PDF
    NSF Biology of the Biological Pump Workshop, February 19–20, 2016 (Hyatt Place New Orleans, New Orleans, LA)The net transfer of organic matter from the surface to the deep ocean is a key function of ocean food webs. The combination of biological, physical, and chemical processes that contribute to and control this export is collectively known as the “biological pump”, and current estimates of the global magnitude of this export range from 5 – 12 Pg C yr-1. This material can be exported in dissolved or particulate form, and many of the biological processes that regulate the composition, quantity, timing, and distribution of this export are poorly understood or constrained. Export of organic material is of fundamental importance to the biological and chemical functioning of the ocean, supporting deep ocean food webs and controlling the vertical and horizontal segregation of elements throughout the ocean. Remineralization of exported organic matter in the upper mesopelagic zone provides nutrients for surface production, while material exported to depths of 1000 m or more is generally considered to be sequestered — i.e. out of contact with the atmosphere for centuries or longer. The ability to accurately model a system is a reflection of the degree to which the system is understood. In the case of export, semi-empirical and simple mechanistic models show a wide range of predictive skill. This is, in part, due to the sparseness of available data, which impedes our inability to accurately represent, or even include, all relevant processes (sometimes for legitimate computational reasons). Predictions will remain uncertain without improved understanding and parameterization of key biological processes affecting export.Funding for this workshop was provided by the National Science Foundation (NSF). Coordination and logistical support for this workshop was provided by the Ocean Carbon and Biogeochemistry (OCB) Program (www.us-ocb.org

    An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors

    Get PDF
    Current anticancer chemotherapy relies on a limited set of in vitro or indirect prognostic markers of tumor response to available drugs. A more accurate analysis of drug sensitivity would involve studying tumor response in vivo. To this end, we have developed an implantable device that can perform drug sensitivity testing of several anticancer agents simultaneously inside the living tumor. The device contained reservoirs that released microdoses of single agents or drug combinations into spatially distinct regions of the tumor. The local drug concentrations were chosen to be representative of concentrations achieved during systemic treatment. Local efficacy and drug concentration profiles were evaluated for each drug or drug combination on the device, and the local efficacy was confirmed to be a predictor of systemic efficacy in vivo for multiple drugs and tumor models. Currently, up to 16 individual drugs or combinations can be assessed independently, without systemic drug exposure, through minimally invasive biopsy of a small region of a single tumor. This assay takes into consideration physiologic effects that contribute to drug response by allowing drugs to interact with the living tumor in its native microenvironment. Because these effects are crucial to predicting drug response, we envision that these devices will help identify optimal drug therapy before systemic treatment is initiated and could improve drug response prediction beyond the biomarkers and in vitro and ex vivo studies used today. These devices may also be used in clinical drug development to safely gather efficacy data on new compounds before pharmacological optimization.National Cancer Institute (U.S.) (Innovative Molecular Analysis Technologies Program R21-CA177391)Kibur Medical, Inc

    Entanglements of North Atlantic right whales increase as their distribution shifts in response to climate change: The need for a new management paradigm [poster]

    Get PDF
    Presented at 2019: World Marine Mammal Science Conference, Barcelona, Spain, December 9-12, 2019.Detection rate of severely injured or entangled NARWs began to increase around 2004 - 2007.We thank the North Atlantic Right Whale Consortium for data curation and dissemination, and the Atlantic Large Whale Disentanglement Network for entanglement sighting information

    United States contributions to the Second International Indian Ocean Expedition (US IIOE-2)

    Get PDF
    From the Preface: The purpose of this document is to motivate and coordinate U.S. participation in the Second International Indian Ocean Expedition (IIOE-2) by outlining a core set of research priorities that will accelerate our understanding of geologic, oceanic, and atmospheric processes and their interactions in the Indian Ocean. These research priorities have been developed by the U.S. IIOE-2 Steering Committee based on the outcomes of an interdisciplinary Indian Ocean science workshop held at the Scripps Institution of Oceanography on September 11-13, 2017. The workshop was attended by 70 scientists with expertise spanning climate, atmospheric sciences, and multiple sub-disciplines of oceanography. Workshop participants were largely drawn from U.S. academic institutions and government agencies, with a few experts invited from India, China, and France to provide a broader perspective on international programs and activities and opportunities for collaboration. These research priorities also build upon the previously developed International IIOE-2 Science Plan and Implementation Strategy. Outcomes from the workshop are condensed into five scientific themes: Upwelling, inter-ocean exchanges, monsoon dynamics, inter-basin contrasts, marine geology and the deep ocean. Each theme is identified with priority questions that the U.S. research community would like to address and the measurements that need to be made in the Indian Ocean to address them.We thank the following organizations and programs for financial contributions, support and endorsement: the U.S. National Oceanic and Atmospheric Administration; the U.S. Ocean Carbon and Biogeochemistry program funded by the National Science Foundation and the National Aeronautics and Space Administration; the NASA Physical Oceanography Program; Scripps Institution of Oceanography; and the Indo-US Science and Technology Forum

    Cloning, function, and localization of human, canine, and Drosophila ZIP10 (SLC39A10), a Zn2+ transporter

    Get PDF
    Zinc (Zn2+) is the second most abundant trace element, but is considered a micronutrient, as it is a cofactor for many enzymes and transcription factors. Whereas Zn2+ deficiency can cause cognitive immune or metabolic dysfunction and infertility, excess Zn2+ is nephrotoxic. As for other ions and solutes, Zn2+ is moved into and out of cells by specific membrane transporters: ZnT, Zip, and NRAMP/DMT proteins. ZIP10 is reported to be localized at the apical membrane of renal proximal tubules in rats, where it is believed to play a role in Zn2+ import. Renal regulation of Zn2+ is of particular interest in light of growing evidence that Zn2+ may play a role in kidney stone formation. The objective of this study was to show that ZIP10 homologs transport Zn2+, as well as ZIP10, kidney localization across species. We cloned ZIP10 from dog, human, and Drosophila (CG10006), tested clones for Zn2+ uptake in Xenopus oocytes and localized the protein in renal structures. CG10006, rather than foi (fear-of-intimacy, CG6817) is the primary ZIP10 homolog found in Drosophila Malpighian tubules. The ZIP10 antibody recognizes recombinant dog, human, and Drosophila ZIP10 proteins. Immunohistochemistry reveals that ZIP10 in higher mammals is found not only in the proximal tubule, but also in the collecting duct system. These ZIP10 proteins show Zn2+ transport. Together, these studies reveal ZIP10 kidney localization, a role in renal Zn2+ transport, and indicates that CG10006 is a Drosophila homolog of ZIP10

    Children’s Quantification with Every Over Time

    Get PDF
    This article looks closely at two types of errors children have been shown to make with universal quantification—Exhaustive Pairing (EP) errors and Underexhaustive errors—and asks whether they reflect the same underlying phenomenon. In a large-scale, longitudinal study, 140 children were tested 4 times from ages 4 to 7 on sentences involving the universal quantifier every. We find an interesting inverse relationship between EP errors and Underexhaustive errors over development: the point at which children stop making Underexhaustive errors is also when they begin making EP errors. Underexhaustive errors, common at early stages in our study, may be indicative of a non-adult, non-exhaustive semantics for every. EP errors, which emerge later, and remain frequent even at age 7, are progressive in nature and were also found with adults in a control study. Following recent developmental work (Drozd and van Loosbroek 2006; Smits 2010), we suggest that these errors do not signal lack of knowledge, but may stem from independent difficulties appropriately restricting the quantifier domain in the presence of a salient, but irrelevant, extra object

    The NIHR collaboration for leadership in applied health research and care (CLAHRC) for greater manchester: combining empirical, theoretical and experiential evidence to design and evaluate a large-scale implementation strategy

    Get PDF
    Background: In response to policy recommendations, nine National Institute for Health Research (NIHR) Collaborations for Leadership in Applied Health Research and Care (CLAHRCs) were established in England in 2008, aiming to create closer working between the health service and higher education and narrow the gap between research and its implementation in practice. The Greater Manchester (GM) CLAHRC is a partnership between the University of Manchester and twenty National Health Service (NHS) trusts, with a five-year mission to improve healthcare and reduce health inequalities for people with cardiovascular conditions. This paper outlines the GM CLAHRC approach to designing and evaluating a large-scale, evidence- and theory-informed, context-sensitive implementation programme. Discussion: The paper makes a case for embedding evaluation within the design of the implementation strategy. Empirical, theoretical, and experiential evidence relating to implementation science and methods has been synthesised to formulate eight core principles of the GM CLAHRC implementation strategy, recognising the multi-faceted nature of evidence, the complexity of the implementation process, and the corresponding need to apply approaches that are situationally relevant, responsive, flexible, and collaborative. In turn, these core principles inform the selection of four interrelated building blocks upon which the GM CLAHRC approach to implementation is founded. These determine the organizational processes, structures, and roles utilised by specific GM CLAHRC implementation projects, as well as the approach to researching implementation, and comprise: the Promoting Action on Research Implementation in Health Services (PARIHS) framework; a modified version of the Model for Improvement; multiprofessional teams with designated roles to lead, facilitate, and support the implementation process; and embedded evaluation and learning. Summary: Designing and evaluating a large-scale implementation strategy that can cope with and respond to the local complexities of implementing research evidence into practice is itself complex and challenging. We present an argument for adopting an integrative, co-production approach to planning and evaluating the implementation of research into practice, drawing on an eclectic range of evidence sources.Gill Harvey, Louise Fitzgerald, Sandra Fielden, Anne McBride, Heather Waterman, David Bamford, Roman Kislo and Ruth Boade

    Expression of a protein involved in bone resorption, Dkk1, is activated by HTLV-1 bZIP factor through its activation domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia, a malignancy characterized by uncontrolled proliferation of virally-infected CD4+ T-cells. Hypercalcemia and bone lesions due to osteoclast-mediated bone resorption are frequently associated with more aggressive forms of the disease. The HTLV-1 provirus contains a unique antisense gene that expresses HTLV-1 basic leucine zipper (bZIP) factor (HBZ). HBZ is localized to the nucleus where it regulates levels of transcription by binding to certain cellular transcriptional regulators. Among its protein targets, HBZ forms a stable complex with the homologous cellular coactivators, p300 and CBP, which is modulated through two N-terminal LXXLL motifs in the viral protein and the conserved KIX domain in the coactivators.</p> <p>Results</p> <p>To determine the effects of these interactions on transcription, we performed a preliminary microarray analysis, comparing levels of gene expression in cells with wild-type HBZ versus cells with HBZ mutated in its LXXLL motifs. <it>DKK1</it>, which encodes the secreted Wnt signaling inhibitor, Dickkopf-1 (Dkk1), was confirmed to be transcriptionally activated by HBZ, but not its mutant. Dkk1 plays a major role in the development of bone lesions caused by multiple myeloma. In parallel with the initial findings, activation of Dkk1 expression by HBZ was abrogated by siRNA-mediated knockdown of p300/CBP or by a truncated form of p300 containing the KIX domain. Among HTLV-1-infected T-cell lines tested, the detection of Dkk1 mRNA partially correlated with a threshold level of HBZ mRNA. In addition, an uninfected and an HTLV-1-infected T-cell line transfected with an HBZ expression vector exhibited <it>de novo </it>and increased DKK1 transcription, respectively. In contrast to HBZ, The HTLV-1 Tax protein repressed Dkk1 expression.</p> <p>Conclusions</p> <p>These data indicate that HBZ activates Dkk1 expression through its interaction with p300/CBP. However, this effect is limited in HTLV-1-infected T-cell lines, which in part, may be due to suppression of Dkk1 expression by Tax. Consequently, the ability of HBZ to regulate expression of Dkk1 and possibly other cellular genes may only be significant during late stages of ATL, when Tax expression is repressed.</p

    Comparative Transmissibility of SARS-CoV-2 Variants Delta and Alpha in New England, USA

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta\u27s infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∼6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta\u27s enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations
    corecore