96 research outputs found

    Growth Factor-Dependent Proliferation of the Pancreatic β-cell Line βTC-tet: An Assay for β-cell Mitogenic Factors

    Get PDF
    The ability to expand normal pancreatic islet β cells in culture would significantly advance the prospects of cell therapy for diabetes. A number of growth factors can stimulate limited islet cell replication, however other factors may exist which are more effective β-cell-specific mitogens. The search for novel β-cell growth factors has been hampered by the lack of a β-cell-specific proliferation assay. We developed a simple and sensitive assay for β-cell growth factors based on a conditionally-transformed mouse β-cell line (βTC-tet). These cells express the SV40 T antigen (Tag) oncoprotein under control of the tetracycline (Tc) operon regulatory system. In the presence of Tc, Tag expression is tightly shut off and the cells undergo complete growth arrest. Here we show that the growth-arrested cells can proliferate in response to growth factors in the absence of Tag. Using this assay, a number of growth factors previously shown to be mitogenic to a mixed islet cell population were found to induce proliferation of pure β cells. We conclude that growth-arrested βTC-tet cells can be employed in a survey of factors from various sources for identifying novel factors with β-cell mitogenic activity

    Genes induced by growth arrest in a pancreatic β cell line: identification by analysis of cDNA arrays

    Get PDF
    AbstractPancreatic β cell lines are a potentially attractive source of material for cell therapy of insulin-dependent diabetes mellitus. However, induction of proliferation in post-mitotic, differentiated β cells is likely to affect the expression of multiple genes associated with cell function, resulting in dedifferentiation. We have developed a murine β cell line by conditional transformation with the SV40 T antigen oncoprotein. These cells can undergo reversible induction of proliferation and growth arrest. Here we utilized this model to identify differences in gene expression between proliferating and quiescent β cells, by analyzing known β cell genes and differentially secreted proteins, as well as by a systematic survey of a mouse cDNA array. Our findings demonstrate that growth arrest stimulates expression of the insulin gene and genes encoding components of the insulin secretory vesicles. Screening of the cDNA array revealed the activation of multiple genes following growth arrest, many of them novel genes which may be related to β cell function. Characterization of these genes is likely to contribute to our understanding of β cell function and the ability to employ β cell lines in cell therapy of diabetes

    Activation of PyMT in β Cells Induces Irreversible Hyperplasia, but Oncogene-Dependent Acinar Cell Carcinomas When Activated in Pancreatic Progenitors

    Get PDF
    It is unclear whether the cellular origin of various forms of pancreatic cancer involves transformation or transdifferentiation of different target cells or whether tumors arise from common precursors, with tumor types determined by the specific genetic alterations. Previous studies suggested that pancreatic ductal carcinomas might be induced by polyoma middle T antigen (PyMT) expressed in non-ductal cells. To ask whether PyMT transforms and transdifferentiates endocrine cells toward exocrine tumor phenotypes, we generated transgenic mice that carry tetracycline-inducible PyMT and a linked luciferase reporter. Induction of PyMT in β cells causes β-cell hyperplastic lesions that do not progress to malignant neoplasms. When PyMT is de-induced, β cell proliferation and growth cease; however, regression does not occur, suggesting that continued production of PyMT is not required to maintain the viable expanded β cell population. In contrast, induction of PyMT in early pancreatic progenitor cells under the control of Pdx1 produces acinar cell carcinomas and β-cell hyperplasia. The survival of acinar tumor cells is dependent on continued expression of PyMT. Our findings indicate that PyMT can induce exocrine tumors from pancreatic progenitor cells, but cells in the β cell lineage are not transdifferentiated toward exocrine cell types by PyMT; instead, they undergo oncogene-dependent hyperplastic growth, but do not require PyMT for survival

    Make It Simple: (SR-A1+TLR7) Macrophage Targeted NANOarchaeosomes

    Get PDF
    Hyperhalophilic archaebacteria exclusively produce sn2,3 diphytanylglycerol diether archaeolipids, unique structures absent in bacteria and eukaryotes. Nanovesicles made of archaeolipids known as nanoarchaeosomes (nanoARC), possess highly stable bilayers, some of them displaying specific targeting ability. Here we hypothesize that nanoARC made from Halorubrum tebenquichense archaebacteria, may constitute efficient carriers for the TLR7 agonist imiquimod (IMQ). NanoARC-IMQ takes advantage of the intense interaction between IMQ and the highly disordered, poorly fluid branched archaeolipid bilayers, rich in archaeol analog of methyl ester of phosphatidylglycerophosphate (PGP-Me), a natural ligand of scavenger receptor A1 (SR-A1). This approach lacks complex manufacture steps required for bilayers labeling, enabling future analytical characterization, batch reproducibility, and adaptation to higher scale production. SR-A1 mediated internalization of particulate material is mostly targeted to macrophages and is extensive because it is not submitted to a negative feedback. A massive and selective intracellular delivery of IMQ may concentrate its effect specifically into the endosomes, where the TLR7 is expressed, magnifying its immunogenicity, at the same time reducing its systemic bioavailability, and therefore it's in vivo adverse effects. NanoARC-IMQ (600–900 nm diameter oligolamellar vesicles of ~−43 mV Z potential) were heavily loaded with IMQ at ~44 μg IMQ/mg phospholipids [~20 folds higher than the non-SR-A1 ligand soyPC liposomes loaded with IMQ (LIPO-IMQ)]. In vitro, nanoARC-IMQ induced higher TNF-α and IL-6 secretion by J774A1 macrophages compared to same dose of IMQ and same lipid dose of LIPO-IMQ. In vivo, 3 subcutaneous doses of nanoARC-IMQ+ 10 μg total leishmania antigens (TLA) at 50 μg IMQ per Balb/C mice, induced more pronounced DTH response, accompanied by a nearly 2 orders higher antigen-specific systemic IgG titers than IMQ+TLA and LIPO-IMQ. The isotype ratio of nanoARC-IMQ+TLA remained ~0.5 indicating, the same as IMQ+TLA, a Th2 biased response distinguished by a pronounced increase in antibody titers, without negative effects on splenocytes lymphoproliferation, with a potential CD8+LT induction 10 days after the last dose. Overall, this first approach showed that highly SR-A1 mediated internalization of heavily loaded nanoARC-IMQ, magnified the effect of IMQ on TLR7 expressing macrophages, leading to a more intense in vivo immune response

    Neurogenin3 inhibits proliferation in endocrine progenitors by inducing Cdkn1a

    No full text
    During organogenesis, the final size of mature cell populations depends on their rates of differentiation and expansion. Because transient expression of Neurogenin3 (Neurog3) in progenitor cells in the developing pancreas initiates their differentiation to mature islet cells, we examined the role of Neurog3 in cell cycle control during this process. We found that mitotically active pancreatic progenitor cells in mouse embryos exited the cell cycle after the initiation of Neurog3 expression. Transcriptome analysis demonstrated that the Neurog3-expressing cells dramatically up-regulated the mRNA encoding cyclin-dependent kinase inhibitor 1a (Cdkn1a). In Neurog3 null mice, the islet progenitor cells failed to activate Cdkn1a expression and continued to proliferate, showing that their exit from the cell cycle requires Neurog3. Furthermore, induced transgenic expression of Neurog3 in mouse β-cells in vivo markedly decreased their proliferation, increased Cdkn1a levels, and eventually caused profound hyperglycemia. In contrast, in Cdkn1a null mice, proliferation was incompletely suppressed in the Neurog3-expressing cells. These studies reveal a crucial role for Neurog3 in regulating the cell cycle during the differentiation of islet cells and demonstrate that the subsequent down-regulation of Neurog3 allows the mature islet cell population to expand
    • …
    corecore