289 research outputs found

    Retrieving textual evidence for knowledge graph facts

    Get PDF

    Populating a Knowledge Base with Object-Location Relations Using Distributional Semantics

    Get PDF
    International audienceThe paper presents an approach to extract knowledge from large text corpora, in particular knowledge that facilitates object manipulation by embodied intelligent systems that need to act in the world. As a first step, our goal is to extract the prototypical location of given objects from text corpora. We approach this task by calculating relatedness scores for objects and locations using techniques from distributional semantics. We empirically compare different methods for representing locations and objects as vectors in some geometric space, and we evaluate them with respect to a crowd-sourced gold standard in which human subjects had to rate the prototypicality of a location given an object. By applying the proposed framework on DBpedia, we are able to build a knowledge base of 931 high confidence object-locations relations in a fully automatic fashion.

    A framework for Distributional Formal Semantics

    Get PDF
    Formal semantics and distributional semantics offer complementary strengths in capturing the meaning of natural language. As such, a considerable amount of research has sought to unify them, either by augmenting formal semantic systems with a distributional component, or by defining a formal system on top of distributed representations. Arriving at such a unified framework has, however, proven extremely challenging. One reason for this is that formal and distributional semantics operate on a fundamentally different `representational currency': formal semantics defines meaning in terms of models of the world, whereas distributional semantics defines meaning in terms of linguistic co-occurrence. Here, we pursue an alternative approach by deriving a vector space model that defines meaning in a distributed manner relative to formal models of the world. We will show that the resulting Distributional Formal Semantics offers probabilistic distributed representations that are also inherently compositional, and that naturally capture quantification and entailment. We moreover show that, when used as part of a neural network model, these representations allow for capturing incremental meaning construction and probabilistic inferencing. This framework thus lays the groundwork for an integrated distributional and formal approach to meaning

    Incremental dimension reduction of tensors with random index

    Get PDF
    We present an incremental, scalable and efficient dimension reduction technique for tensors that is based on sparse random linear coding. Data is stored in a compactified representation with fixed size, which makes memory requirements low and predictable. Component encoding and decoding are performed on-line without computationally expensive re-analysis of the data set. The range of tensor indices can be extended dynamically without modifying the component representation. This idea originates from a mathematical model of semantic memory and a method known as random indexing in natural language processing. We generalize the random-indexing algorithm to tensors and present signal-to-noise-ratio simulations for representations of vectors and matrices. We present also a mathematical analysis of the approximate orthogonality of high-dimensional ternary vectors, which is a property that underpins this and other similar random-coding approaches to dimension reduction. To further demonstrate the properties of random indexing we present results of a synonym identification task. The method presented here has some similarities with random projection and Tucker decomposition, but it performs well at high dimensionality only (n>10^3). Random indexing is useful for a range of complex practical problems, e.g., in natural language processing, data mining, pattern recognition, event detection, graph searching and search engines. Prototype software is provided. It supports encoding and decoding of tensors of order >= 1 in a unified framework, i.e., vectors, matrices and higher order tensors.Comment: 36 pages, 9 figure

    SocialLink: exploiting graph embeddings to link DBpedia entities to Twitter profiles

    Get PDF
    SocialLink is a project designed to match social media profiles on Twitter to corresponding entities in DBpedia. Built to bridge the vibrant Twitter social media world and the Linked Open Data cloud, SocialLink enables knowledge transfer between the two, both assisting Semantic Web practitioners in better harvesting the vast amounts of information available on Twitter and allowing leveraging of DBpedia data for social media analysis tasks. In this paper, we further extend the original SocialLink approach by exploiting graph-based features based on both DBpedia and Twitter, represented as graph embeddings learned from vast amounts of unlabeled data. The introduction of such new features required to redesign our deep neural network-based candidate selection algorithm and, as a result, we experimentally demonstrate a significant improvement of the performances of SocialLink

    Quranic Topic Modelling Using Paragraph Vectors

    Get PDF
    The Quran is known for its linguistic and spiritual value. It comprises knowledge and topics that govern different aspects of people’s life. Acquiring and encoding this knowledge is not a trivial task due to the overlapping of meanings over its documents and passages. Analysing a text like the Quran requires learning approaches that go beyond word level to achieve sentence level representation. Thus, in this work, we follow a deep learning approach: paragraph vector to learn an informative representation of Quranic Verses. We use a recent breakthrough in embeddings that maps the passages of the Quran to vector representation that preserves more semantic and syntactic information. These vectors can be used as inputs for machine learning models, and leveraged for the topic analysis. Moreover, we evaluated the derived clusters of related verses against a tagged corpus, to add more significance to our conclusions. Using the paragraph vectors model, we managed to generate a document embedding space that model and explain word distribution in the Holy Quran. The dimensions in the space represent the semantic structure in the data and ultimately help to identify main topics and concepts in the text

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing
    corecore