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Abstract. The paper presents an approach to extract knowledge from large text
corpora, in particular knowledge that facilitates object manipulation by embod-
ied intelligent systems that need to act in the world. As a first step, our goal is to
extract the prototypical location of given objects from text corpora. We approach
this task by calculating relatedness scores for objects and locations using tech-
niques from distributional semantics. We empirically compare different methods
for representing locations and objects as vectors in some geometric space, and
we evaluate them with respect to a crowd-sourced gold standard in which human
subjects had to rate the prototypicality of a location given an object. By applying
the proposed framework on DBpedia, we are able to build a knowledge base of
931 high confidence object-locations relations in a fully automatic fashion.3

1 Introduction

Embodied intelligent systems such as robots require world knowledge to be able to
perceive the world appropriately and perform appropriate actions on the basis of their
understanding of the world. Take the example of a domestic robot that has the task of
tidying up an apartment. A robot needs, e.g., to categorize different objects in the apart-
ment, know where to put or store them, know where and how to grasp them, and so on.
Encoding such knowledge by hand is a tedious, time-consuming task and is inherently
prone to yield incomplete knowledge. It would be desirable to develop approaches that
can extract such knowledge automatically from data.

To this aim, in this paper we present an approach to extract object knowledge from
large text corpora. Our work is related to the machine reading and open information
extraction paradigms aiming at learning generic knowledge from text corpora. In con-
trast, in our research we are interested in particular in extracting knowledge that facili-
tates object manipulation by embodied intelligent systems that need to act in the world.
Specifically, our work focuses on the problem of relation extraction between entities
mentioned in the text4. A relation is defined in the form of a tuple t = (e1; e2; ...; en)
where the ei are entities in a predefined relation r within documentD [1]. We develop a
framework with foundations in distributional semantics, the area of Natural Language

3 The work in this paper is partially funded by the ALOOF project (CHIST-ERA program).
4 In the rest of the paper, the labels of the entities are identifiers from DBpedia URIs, stripped

of the namespace http://dbpedia.org/resource/ for readability.



Processing that deals with the representation of the meaning of words in terms of their
distributional properties, i.e., the context in which they are observed. It has been shown
in the literature that distributional semantic techniques give a good estimation of the re-
latedness of concepts expressed in natural language (see Section 3 for a brief overview
of distributional semantics principles). Semantic relatedness is useful for a number of
tasks, from query expansion to word association, but it is arguably too general to build
a general knowledge base, i.e., a triple like <entity1, relatedTo, entity2>
might not be informative enough for many purposes.

Distributional Relation Hypothesis We postulate that the relatedness relation encoded
in distributional vector representations can be made more precise based on the type of
the entities involved in the relation, i.e., if two entities are distributionally related, the
natural relation that comes from their respective types is highly likely to occur. For
example, the location relation that holds between an object and a room is represented
in a distributional space if the entities representing the object and the room are highly
associated according to the distributional space’s metric.

Based on this assumption, as a first step of our work, we extract the prototypical location
of given objects from text corpora. We frame this problem as a ranking task in which,
given an object, our method computes a ranking of locations according how protoypical
a location they are for this object. We build on the principle of distributional similarity
and map each location and object to a vector representation computed on the basis of
words these objects or locations co-occur with in a corpus. For each object, the locations
are then ranked by the cosine similarity of their vector representations.

The paper is structured as follows. Section 2 discusses relevant literature, while
Section 3 provides a background on word and entity vector spaces. Section 4 describes
the proposed framework to extract relations from text. Section 5 reports on the creation
of the goldstandard, and on the experimental results. Section 6 describes the obtained
knowledge base of object locations, while conclusions end the paper.

2 Related Work

Our work relates to the three research lines discussed below, i.e.: i) machine reading, ii)
supervised relation extraction, and iii) encoding common sense knowledge in domain-
independent ontologies and knowledge bases.

The machine reading paradigm. In the field of knowledge acquisition from the Web,
there has been substantial work on extracting taxonomic (e.g. hypernym), part-of rela-
tions [17] and complete qualia structures describing an object [9]. Quite recently, there
has been a focus on the development of systems that can extract knowledge from any
text on any domain (the open information extraction paradigm [15]). The DARPA Ma-
chine Reading Program [2] aims at endowing machines with capabilities for lifelong
learning by automatically reading and understanding texts (e.g. [14]). While such ap-
proaches are able to quite robustly acquire knowledge from texts, these models are not
sufficient to meet our objectives since: i) they lack visual and sensor-motor grounding,



ii) they do not contain extensive object knowledge. Thus, we need to develop additional
approaches that can harvest the Web to learn about usages, appearance and functionality
of common objects. While there has been some work on grounding symbolic knowl-
edge in language [32], so far there has been no serious effort to compile a large and
grounded object knowledge base that can support cognitive systems in understanding
objects.

Supervised Relation Extraction. While machine reading attempts to acquire general
knowledge by reading texts, other works attempt to extract specific relations applying
supervised techniques to train classifiers. A training corpus in which the relation of in-
terest is annotated is typically assumed (e.g. [7]). Another possibility is to rely on the so
called distant supervision assumption and use an existing knowledge base to bootstrap
the process by relying on triples or facts in the knowledge base to label examples in a
corpus (e.g. [43, 21, 20, 40]). Other researchers have attempted to extract relations by
reading the Web, e.g. [5]. Our work differs from these approaches in that, while we are
extracting a specific relation, we do not rely on supervised techniques to train a clas-
sification model, but rather rely on semantic relatedness and distributional similarity
techniques to populate a knowledge base with the relation in question.

Ontologies and KB of common sense knowledge. DBpedia5 is a large-scale knowledge
base automatically extracted from semi-structured parts of Wikipedia. Besides its sheer
size, it is attractive for the purpose of collecting general knowledge given the one-to-one
mapping with Wikipedia ( allowing us to exploit the textual and structural information
contained in there) and its position as the central hub of the Linked Open Data cloud.

YAGO [38] is an ontology automatically created by mapping relations between
WordNet synsets such as hypernymy and relations between Wikipedia pages such as
links and redirects to semantic relations between concepts. Despite its high coverage,
for our goals YAGO suffers from the same drawbacks of DBpedia, i.e. a lack of gen-
eral relations between entities that are not instance of the DBpedia ontology, such as
common objects. While a great deal of relations and properties of named entities are
present, knowledge about, e.g. the location or the functionality of entities is missing.

ConceptNet6 [26] is a semantic network containing lots of things computers should
know about the world. While it shares the same goals of the knowledge base we aim at
building, ConceptNet is not a Linked Open Data resource. In fairness, the resource is
in a graph-like structure, thus RDF triples could be extracted from it, and the building
process provides a way of linking the nodes to DBpedia entities, among other LOD
resources. However, we cannot integrate ConceptNet directly in our pipeline because
of the low coverage of the mapping with DBpedia— of the 120 DBpedia entities in our
gold standard (see Section 5) only 23 have a correspondent node in ConceptNet.

OpenCyC7 attempts to assemble a comprehensive ontology and knowledge base
of everyday common sense knowledge, with the goal of enabling AI applications to
perform human-like reasoning. While for the moment in our work we focus on specific

5 http://dbpedia.org
6 http://conceptnet5.media.mit.edu/
7 http://www.opencyc.org/; as RDF representations: http://sw.opencyc.org/



concepts and relations relevant to our scenario, we will consider linking them to real-
world concepts in OpenCyc.

3 Background: Word and Entity Vector Spaces

Word space models (or distributional space models, or word vector spaces) are abstract
representations of the meaning of words, encoded as vectors in a high-dimensional
space. A word vector space is constructed by counting cooccurrences of pairs of words
in a text corpus, building a large square n-by-n matrix where n is the size of the vo-
cabulary and the cell i, j contains the number of times the word i has been observed in
cooccurrence with the word j. The i-th row in a cooccurrence matrix is a n-dimensional
vector that acts as a distributional representation of the i-th word in the vocabulary.
Words that appear in similar contexts often have similar representations in the vector
space; this similarity is geometrically measurable with a distance metric such as co-
sine similarity, defined as the cosine of the angle between two vectors. This is the key
point to linking the vector representation to the idea of semantic relatedness, as the dis-
tributional hypothesis states that “words that occur in the same contexts tend to have
similar meaning” [19]. Several techniques can be applied to reduce the dimensionality
of the cooccurrence matrix. Latent Semantic Analysis [24], for instance, uses Singular
Value Decomposition to prune the less informative elements while preserving most of
the topology of the vector space, and reducing the number of dimensions to 100-500.

In parallel, neural network-based models have recently began to rise to prominence.
To compute word embeddings, several models rely on huge amounts of natural language
texts from which a vector representation for each word is learned by a neural network.
Their representations of the words are based on prediction as opposed to counting [4].

Vector spaces created on word distributional representations have been successfully
proven to encode word similarity and relatedness relations [34, 36, 10], while word em-
beddings have proven to be a useful feature in many natural language processing tasks
[12, 25, 37] in that they often encode semantically meaningful information of a word.

4 Word Embeddings for Relation Extraction

This section presents our framework to extract relations from natural language text.
The methods are based on distributional semantics, but present different approaches
to compute vector representations of entities: one is based on a word embedding ap-
proach (Section 4.1), the other on a LSA-based representation of DBpedia entities (Sec-
tion 4.2). We present one framework for which we test different ways of calculating the
vector embeddings, each one having its own specificities and strengths.

4.1 A Word Space Model of Entity Lexicalizations

In this section, we propose a neural network-based word embedding method for the
automatic population of a knowledge base of object-location relations. As outlined in
Section 1, we frame this task as a ranking problem and score the vector representation



for object-location pairs with respect to how prototypical the location is for the given
object. Many word embedding methods encode useful semantic and syntactic proper-
ties [23, 31, 29] that we leverage for the extraction of object-location relations. In this
work, we restrict our experiments to the skip-gram method [28]. The objective of the
skip-gram method is to learn word representations that are useful for predicting context
words. As a result, the learned embeddings often display a desirable linear structure [31,
29]. In particular, word representations of the skip-gram model often produce meaning-
ful results using simple vector addition [29]. For this work, we trained the skip-gram
model on a corpus of roughly 83 million Amazon reviews [27].

Motivated by the compositionality of word vectors, we derive vector representations
for the entities as follows: considering a DBpedia entity such as Public_Toilet
(we call this label the lexicalization), we clean it by removing parts in parenthesis, con-
vert it to lower case, and split it into its individual words. We retrieve the respective
word vectors from our pretrained word embeddings and sum them to obtain a sin-
gle vector, namely, the vector representation of the entity: vector(public toilet) =
vector(public) + vector(toilet). The generation of entity vectors is trivial for “single-
word” entities, such as Cutlery or Kitchen, that are already contained in our word
vector vocabulary. In this case, the entity vector is simply the corresponding word vec-
tor. With this derived set of entity vector representations, we compute cosine vector
similarity score for object-location pairs. This score is an indicator of how typical the
location for the object is. Given an object, we can create a ranking of locations with the
most likely location candidates at the top of the list (see Table 1).

Table 1: Locations for a sample object, extracted by computing cosine similarity on
skip-gram-based vectors.

Object Location Cosine Similarity
Dishwasher Kitchen .636

Laundry room .531
Pantry .525
Wine cellar .519

4.2 Distributional Representations of Entities

Vector representations of words (Section 4.1) are attractive since they only require a
sufficiently large text corpus with no manual annotation. However, the drawback of fo-
cusing on words is that a series of linguistic phenomena may affect the vector represen-
tation. For instance, a polysemous word as rock (stone, musical genre, metaphorically
strong person, etc.) is represented by a single vector where all the senses are conflated.

NASARI [8], a resource containing vector representations of most of DBpedia en-
tities, solves this problem by building a vector space of concepts. The NASARI vectors
are actually distributional representations of the entities in BabelNet [33], a large mul-
tilingual lexical resource linked to Wordnet, DBpedia, Wiktionary and other resources.
The NASARI approach collects cooccurrence information of concepts from Wikipedia
and then applies a LSA-like procedure for dimensionality reduction. The context of a



concept is based on the set of Wikipedia pages where a mention of it is found. As shown
in [8], the vector representations of entities encode some form of semantic relatedness,
with tests on a sense clustering task showing positive results. Table 2 shows a sample
of pairs of NASARI vectors together with their pairwise cosine similarity ranging from
-1 (totally unrelated) to 1 (identical vectors).

Table 2: Examples of cosine similarity computed on NASARI vectors.
Cherry Microsoft

Apple .917 .325
Apple Inc. .475 .778

Following the hypothesis put forward in the introduction, we focus on the extraction
of object-location relations by computing the cosine similarities of object and location
entities. We exploit the alignment of BabelNet with DBpedia, thus generating a similar-
ity score for pairs of DBpedia entities. For example, the DBpedia entity Dishwasher
has a cosine similarity of .803 to the entity Kitchen, but only .279 with Classroom,
suggesting that the appropriate location for a generic dishwasher is the kitchen rather
than a classroom. Since cosine similarity is a graded value on a scale from -1 to 1, we
can generate, for a given object, a ranking of candidate locations, e.g., the rooms of a
house. Table 3 shows a sample of object-location pairs of DBpedia labels, ordered by
the cosine similarity of their respective vectors in NASARI. Prototypical locations for
the objects show up at the top of the list as expected, indicating a relationship between
the semantic relatedness expressed by the cosine similarity of vector representations
and the actual locative relation of entities.

Table 3: Locations for a sample object, extracted by computing cosine similarity on
NASARI vectors.

Object Location Cos. Similarity
Dishwasher Kitchen .803

Air shower (room) .788
Utility room .763
Bathroom .758

5 Evaluation

This section presents the evaluation of the proposed framework for relation extraction
(Section 4). We collected a set of relations rated by human subjects to provide a com-
mon benchmark, and we test several methods with varying values for their parameters.
We then adopt the best performing method to automatically build a knowledge base and
test its quality against the manually created gold standard dataset.



5.1 Gold Standard

To test our hypothesis, we collected a set of human judgments about the likelihood of
objects to be found in certain locations. To select the objects and locations for this exper-
iment, every DBpedia entity that falls under the category Domestic implements,
or under one of the narrower categories than Domestic implements according
to SKOS8, is considered an object; every DBpedia entity that falls under the category
Rooms is considered a location. This step results in 336 objects and 199 locations.

To select suitable object-location pairs for the creation of the gold standard, we
need to filter out odd or uncommon examples of objects or locations like Ghodiyu
or Fainting room. For example, the rankings produced by the cosine similarity of
NASARI vectors (Table 3) are cluttered with results that are less prototypical because of
their uncommonness. An empirical measure of commonness of entities could be used
to rerank or filter the result to improve its generality. To this extent, we use the URI
counts extracted from the parsing of Wikipedia with the DBpedia Spotlight tool for
entity linking [13]. These counts are derived, for each DBpedia entity, from the number
of incoming links to its correspondent Wikipedia page. We use it as an approximation
of the notion of commonness of locations, e.g., a Kitchen (URI count: 742) is a more
common location than a Billiard room (URI count: 82). Table 4 shows an example
of using such counts to filter out irrelevant entries from the ranked list of candidate
locations for the entity Paper towel according to NASARI-based similarity.

Table 4: Locations for Paper towel, extracted by computing cosine similarity on
NASARI vectors with URI count. Locations with frequency <100 are in gray.

Location URI count Cosine Similarity
Air shower (room) 0 .671
Public toilet 373 .634
Mizuya 11 .597
Kitchen 742 .589

We rank the 66,864 pairs of Domestic implements and Rooms using the
aforementioned entity frequency measure and select the 100 most frequent objects and
the 20 most frequent locations (2,000 object-location pairs in total). Examples of pairs:
(Toothbrush,Hall), (Wallet, Ballroom) and (Nail file, Kitchen).

In order to collect the judgments, we set up a crowdsourcing experiment on the
Crowdflower platform9. For each of the 2,000 object-location pairs, contributors were
asked to rate the likelihood of the object to be in the location out of four possible values:

– -2 (unexpected): finding the object in the room would cause surprise, e.g., it is
unexpected to find a bathtub in a cafeteria.

– -1 (unusual): finding the object in the room would be odd, the object feels out of
place, e.g., it is unusual to find a mug in a garage.

8 Simple Knowledge Organization System: https://www.w3.org/2004/02/skos/
9 http://www.crowdflower.com/



– 1 (plausible): finding the object in the room would not cause any surprise, it is seen
as a normal occurrence, e.g., it is plausible to find a funnel in a dining room.

– 2 (usual): the room is the place where the object is typically found, e.g, the kitchen
is the usual place to find a spoon.

Contributors are shown ten examples per page, instructions, a short description of
the entities (the first sentence from the Wikipedia abstract), a picture (from Wikimedia
Commons, when available), and the list of possible answers as labeled radio buttons.

After running the crowdsourcing experiment for a few hours, we collected 12,767
valid judgments (455 were deemed “untrusted” by Crowdflower’s quality filtering sys-
tem based on a number of test questions we provided). Most of the pairs have received
at least 5 separate judgments, with some outliers collecting more than one hundred
judgments each. The average agreement, i.e. percentage of contributors that answered
the most common answer for a given question, is 64.74%. The judgments are skewed
towards the negative end of the spectrum, as expected, with 37% pairs rated unexpected,
30% unusual, 24% plausible and 9% usual. The cost of the experiment was 86 USD.

5.2 Ranking Evaluation

The proposed methods produce a ranking on top of a list of locations, given an input
object. To test the validity of our methods we need to compare their output against
a gold standard ranking. The latter is extracted from the dataset described in Section
5.1 by assigning to each object-location pair the average of the numeric values of the
judgments received. For instance, if the pair (Wallet, Ballroom) has been rated
-2 (unexpected) six times, -1 (unusual) three times, and never 1 (plausible) or 2 (usual),
its score will be about -1.6, indicating that a Wallet is not very likely to be found in a
Ballroom. The pairs are then ranked by this averaged score on a per-object basis.

As a baseline, we apply two simple methods based on entity frequency. In the loca-
tion frequency baseline, the object-location pairs are ranked according to the frequency
of the location. The ranking is thus the same for each object, since the score of a pair
is only computed based on the location. This method makes sense in absence of any
further information on the object: e,g, a robot tasked to find an unknown object should
inspect “common” rooms such as a kitchen or a studio first, rather than “uncommon”
rooms such as a pantry. The second baseline (link frequency) is based on counting how
often every object is mentioned on the Wikipedia page of every location and vice versa.
A ranking is produced based on these counts. An issue is that they could be sparse, i.e.,
most object-location pairs have a count of 0, thus sometimes producing no value for the
ranking for an object. This is the case for rather “unusual” objects and locations.

For each object in the dataset, we compare the location ranking produced by our
algorithms to the gold standard ranking and compute the Normalized Discounted Cu-
mulative Gain (NDCG), a measure of rank correlation used in information retrieval that
gives more weight to the results at the top of the list than at its bottom. This choice
of evaluation metric follows from the idea that it is more important to guess the posi-
tion in the ranking of most likely locations for a given object than to the least likely
locations. Table 5 shows the average NDCG across all objects: methods NASARI-sim
(Section 4.2) and SkipGram-sim (Section 4.1), plus the two baselines introduced above.
Both our methods outperform the baselines with respect to the gold standard rankings.



Table 5: Average NDCG of the produced rankings against the gold standard rankings.
Method NDCG
Location frequency baseline .851
Link frequency baseline .875
NASARI-sim .903
SkipGram-sim .912

5.3 Precision Evaluation

The NDCG measure gives a complete account of the quality of the produced rankings,
but it is not easy to interpret apart from comparisons of different outputs. To gain a better
insight into our results, we provide an alternative evaluation based on the “precision at
k” measure. This Information Retrieval measure is the number of retrieved items that
are ranked in the top-k part of the retrieved list and of the relevance ranking. In our
experiments, for a given object, precision at k is the number of locations among the first
k of the produced rankings that are also among the top-k locations in the gold standard
ranking. It follows that, with k = 1, precision at 1 is 1 if the top returned location is the
top location in the gold standard, and 0 otherwise. We compute the average of precision
at k for k = 1 and k = 3 across all the objects. The results are shown in Table 6.

Table 6: Average precision at k for k = 1 and k = 3.
Method precision at 1 precision at 3
Location frequency baseline .000 .008
Link frequency baseline .280 .260
NASARI-sim .390 .380
SkipGram-sim .350 .400

As for the rank correlation evaluation, our methods outperform the baselines. The
location frequency baseline performs very poorly, due to an idiosyncrasy in the fre-
quency data, that is, the most “frequent” location in the dataset is Aisle. This behavior
reflects the difficulty in evaluating this task using only automatic metrics, since automat-
ically extracted scores and rankings may not correspond to common sense judgment.

The NASARI-based similarities outperform the SkipGram-based method when it
comes to guessing the most likely location for an object, as opposed to the better per-
formance of SkipGram-sim in terms of precision at 3 and rank correlation (Section 5.2).

We explored the results and found that for 19 objects out of 100, NASARI-sim
correctly guesses the top ranking location but SkipGram-sim fails, while the opposite
happens 15 out of 100 times. We also found that the NASARI-based method has a
lower coverage than the other method., due to the coverage of the original resource
(NASARI), where not every entity in DBpedia is assigned a vector (objects like Back-
pack and Comb, and locations like Loft are all missing). The SkipGram-based method
also suffer from this problem, however, only for very rare or uncommon objects and lo-
cations (as Triclinium or Jamonera). These findings suggest that the two methods



could have different strengths and weaknesses. In the following section we show two
strategies to combine them.

5.4 Hybrid Methods: Fallback Pipeline and Linear Combination
The results from the previous sections highlight that the performance of our two main
methods may differ qualitatively. In an effort to overcome the coverage issue of NASARI-
sim, and at the same time experiment with hybrid methods to extract location relations,
we devised two simple ways of combining the SkipGram-sim and NASARI-sim meth-
ods. The first method is based on a fallback strategy: given an object, we consider the
pair similarity of the object to the top ranking location according to NASARI-sim as
a measure of confidence. If the top ranked location among the NASARI-sim ranking
is exceeding a certain threshold, we consider the ranking returned by NASARI-sim as
reliable. Otherwise, if the similarity is below the threshold, we deem the result unreli-
able and we adopt the ranking returned by SkipGram-sim instead. The second method
produces an object-location similarity scores by linear combination of the NASARI
and SkipGram similarities. The similarity score for the generic pair o, l is thus given
by sim(o, l) = αsimNASARI(o, l) + (1 − α)simSkipGram(o, l), where parameter α
controls the weight of one method w.r.t. the other.

Table 7: Rank correlation and precision at k for the method based on fallback strategy.
Method NDCG precision at 1 precision at 3
Fallback strategy (threshold=.4) .907 .410 .393
Fallback strategy (threshold=.5) .906 .400 .393
Fallback strategy (threshold=.6) .908 .410 .406
Fallback strategy (threshold=.7) .909 .370 .396
Fallback strategy (threshold=.8) .911 .360 .403
Linear combination (α=.0) .912 .350 .400
Linear combination (α=.2) .911 .380 .407
Linear combination (α=.4) .913 .400 .423
Linear combination (α=.6) .911 .390 .417
Linear combination (α=.8) .910 .390 .410
Linear combination (α=1.0) .903 .390 .380
Max .911 .410 .413

Table 7 shows the obtained results, with varying values of the parameters threshold
and α. The line labeled Max shows the result obtained by choosing the highest simi-
larity between NASARI-sim and SkipGram-sim, for comparison. While the NDCG is
basically not affected, both precision at 1 and precision at 3 show an increase in perfor-
mance with respect to any of the previous methods.

6 Building a Knowledge Base of Object Locations

In the the previous section, we tested how the proposed methods succeed in determining
the relation between given objects and locations on a closed set of entities (for the



purpose of evaluation). In this section we return to the original motivation of this work,
that is, to collect location information about objects in an automatic fashion.

(a) Precision (b) Recall (c) F-score

Fig. 1: Evaluation on automatically created knowledge bases (“usual” locations).

(a) Precision (b) Recall (c) F-score

Fig. 2: Evaluation on automatically created knowledge bases (“plausible” and “usual”
locations).

All the methods introduced in this work are based on some measure of relatedness
between entities, expressed as a real number in the range [-1,1] interpretable as a sort of
confidence score relative to the target relation. Therefore, by imposing a threshold on
the similarity scores and selecting only the object-location pairs that score above said
threshold, we can extract a high-confidence set of object-location relations to build a
new knowledge base from scratch. Moreover, by using different values for the threshold,
we are able to control the quality and the coverage of the produced relations.

We test this approach on the gold standard dataset introduced in Section 5, using
the version with data aggregated by Crowdflower: the constributors’ answers are aggre-
gated using relative majority, that is, each object-location pair has exactly one judgment



assigned to it, corresponding to the most popular judgment among all the contributors
that answered that question.We extract two lists of relations from this dataset to be used
as a gold standard for experimental tests: one list of the 156 pairs rated 2 (usual) by
the majority of contributors, and a larger list of the 496 pairs rated either 1 (plausible)
or 2 (usual). The aggregated judgments in the gold standard have a confidence score
assigned to them by Crowdflower, based on a measure of inter-rater agreement. Pairs
that score low on this confidence measure (6 0.5) were filtered out, leaving respectively
118 pairs in the “usual” set 496 pairs in the “plausible or usual” set.

We order the object-location pairs produced by our two main methods by similar-
ity score, and select the first n from the list, with n being a parameter. We also add to
the comparison the results of the two hybrid methods from Section 5.4, with the best
performing parameters in terms of precision at 1, namely the fallback strategy with
threshold on similarity equal to 0.6 and the linear combination with α = 0.4. For the
location relations extracted with these methods, we compute the precision and recall
against the gold standard sets, with varying values of n. Here, the precision is the per-
centage of correctly predicted pairs in the set of all predicted pairs, while the recall is
the percentage of predicted pairs that also occur in the gold standard. Figures 1 and 2
show the evaluation of the four methods evaluated against the two aggregated gold stan-
dard datasets described above. Figures 1c and 2c, in particular, show F-score plots for
a direct comparison of the performance. The precision and recall figures show similar
performances for all the methods, with the SkipGram-sim method obtaining a gener-
ally higher recall. The SkipGram-sim method produces generally better-quality sets of
relations. However, if the goal is high precision, the other methods may be preferable.

Given these results, we can aim for a high-confidence knowledge base by selecting
the threshold on object-location similarity scores that produces a reasonably high pre-
cision knowledge base in the evaluation. For instance, the knowledge base made by the
top 50 object-location pairs extracted with the linear combination method (α = 0.4)
has 0.52 precision and 0.22 recall on the “usual” gold standard (0.70 and 0.07 respec-
tively on the “usual” or “plausible” set, see Figures 1a and 2a). The similarity scores
in this knowledge base range from 0.570 to 0.866. Following the same methodology
that we used to construct the gold standard set of objects and locations (Section 5.1),
we extract all the 336 Domestic implements and 199 Rooms from DBpedia, for
a total of 66,864 object-location pairs. Selecting only the pairs whose similarity score
is higher than 0.570, according to the linear combination method, yields 931 high con-
fidence location relations. Of these, only 52 were in the gold standard set of pairs (45
were rated “usual” or “plausible” locations), while the remaining 879 are new, such as
(Trivet, Kitchen), (Flight bag, Airport lounge) or (Soap dispenser,
Unisex public toilet). The distribution of objects across locations has an arith-
metic mean of 8.9 objects per location and standard deviation 11.0.Kitchen is the
most represented location with 89 relations, while 15 out of 107 locations are associ-
ated with one single object. 10

10 The full automatically created knowledge base is available at http://project.inria.
fr/aloof/files/2016/04/objectlocations.nt_.gz



7 Conclusion and Future Work

This paper presents novel methods to extract object relations, focusing on the typi-
cal locations of common objects. The proposed approaches are based on distributional
semantics, where vector spaces are built that represent words or concepts in a high-
dimensional space. We then map vector distance to semantic relatedness, and instanti-
ate a specific relation that depends on the type of the entities involved (e.g., an object
highly related to a room indicates that the room is a typical location for the object)11.

The NASARI-based scoring method is a concept-level vectors space model derived
from BabelNet. The skip-gram model (Section 4.1) is trained on Amazon review data
and offers a word-level vector space which we exploit for scoring object-location pairs.
Experiments on a crowdsourced dataset of human judgments show that they offer dif-
ferent advantages. To combine their strengths, we test two combination strategies, and
show an improvement on their performances. Finally, we select the best parameters to
extract a new, high-precision knowledge base of object locations.

As future work, we would like to employ retrofitting [16] to enrich our pretrained
word embeddings with concept knowledge from a semantic network such as Concept-
Net or WordNet [30] in a post-processing step. With this technique, we might be able
to combine the benefits of the concept-level and word-level semantics in a more so-
phisticated way to bootstrap the creation of an object-location knowledge base. We be-
lieve that this method is a more appropriate tool than the simple linear combination of
scores. By specializing our skip-gram embeddings for relatedness instead of similarity
[22] even better results could be achieved. Apart from that, we would like to investigate
knowledge base embeddings and graph embeddings [42, 6, 39] that model entities and
relations in a vector space in more detail. By defining an appropriate training objective,
we might be able to compute embeddings that encode directly object-location relations
and thus are tailored more precisely to our task at hand. Finally, we used the frequency
of entity mentions in Wikipedia as a measure of commonality to drive the creation of
a gold standard set for evaluation. This information, or equivalent measures, could be
integrated directly into our relation extraction framework, for example in the form of a
weighting scheme, to improve its predictions accuracy.

As main limitation of our current work, it needs to be stressed that the relation in
question (here isLocatedAt) is predicted in all cases where the semantic relatedness is
over a certain threshold. Thus, the method described is not specific for the particular
relation given. In fact, the relation we predict is a relation of general (semantic) associ-
ation. In our particular case, the method works due to the specifiy of the types invovled
(room and object), which seem to be specific enough to restict the space of possible re-
lations. It is not clear, however, to which other relations our method would generalize.
This is left for future investigation. In particular, we intend to extend our method so that
a model can be trained to predict a particular relation rather than a generic associative
relationship.

11 All the datasets resulting from this work are available at https://project.inria.fr/
aloof/data/
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