13,630 research outputs found

    Relativistic viscoelastic fluid mechanics

    Get PDF
    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.Comment: 52pages, 11figures; v2: minor corrections; v3: minor corrections, to appear in Physical Review E; v4: minor change

    Covariant statistical mechanics and the stress-energy tensor

    Full text link
    After recapitulating the covariant formalism of equilibrium statistical mechanics in special relativity and extending it to the case of a non-vanishing spin tensor, we show that the relativistic stress-energy tensor at thermodynamical equilibrium can be obtained from a functional derivative of the partition function with respect to the inverse temperature four-vector \beta. For usual thermodynamical equilibrium, the stress-energy tensor turns out to be the derivative of the relativistic thermodynamic potential current with respect to the four-vector \beta, i.e. T^{\mu \nu} = - \partial \Phi^\mu/\partial \beta_\nu. This formula establishes a relation between stress-energy tensor and entropy current at equilibrium possibly extendable to non-equilibrium hydrodynamics.Comment: 4 pages. Final version accepted for publication in Phys. Rev. Let

    Controlling quasiparticle excitations in a trapped Bose-Einstein condensate

    Full text link
    We describe an approach to quantum control of the quasiparticle excitations in a trapped Bose-Einstein condensate based on adiabatic and diabatic changes in the trap anisotropy. We describe our approach in the context of Landau-Zener transition at the avoided crossings in the quasiparticle excitation spectrum. We show that there can be population oscillation between different modes at the specific aspect ratios of the trapping potential at which the mode energies are almost degenerate. These effects may have implications in the expansion of an excited condensate as well as the dynamics of a moving condensate in an atomic wave guide with a varying width

    Resonance Damping in Ferromagnets and Ferroelectrics

    Full text link
    The phenomenological equations of motion for the relaxation of ordered phases of magnetized and polarized crystal phases can be developed in close analogy with one another. For the case of magnetized systems, the driving magnetic field intensity toward relaxation was developed by Gilbert. For the case of polarized systems, the driving electric field intensity toward relaxation was developed by Khalatnikov. The transport times for relaxation into thermal equilibrium can be attributed to viscous sound wave damping via magnetostriction for the magnetic case and electrostriction for the polarization case.Comment: 5 pages no figures ReVTeX

    Non-linear effects in the cyclotron resonance of a massless quasi-particle in graphene

    Full text link
    We consider the classical motion of a massless quasi-particle in a magnetic field and under a weak electromagnetic radiation with the frequency ω\omega. Due to the non-parabolic, linear energy dispersion, the particle responds not only at the frequency ω\omega but generates a broad frequency spectrum around it. The linewidth of the cyclotron resonance turns out to be very broad even in a perfectly pure material which allows one to explain recent experimental data in graphene. It is concluded that the linear response theory does not work in graphene in finite magnetic fields.Comment: 5 pages, 4 figure

    Ringing the Randall-Sundrum braneworld: metastable gravity wave bound states

    Full text link
    In the Randall-Sundrum scenario, our universe is a 4-dimensional `brane' living in a 5-dimensional bulk spacetime. By studying the scattering of bulk gravity waves, we show that this brane rings with a characteristic set of complex quasinormal frequencies, much like a black hole. To a bulk observer these modes are interpreted as metastable gravity wave bound states, while a brane observer views them as a discrete spectrum of decaying massive gravitons. Potential implications of these scattering resonances are discussed.Comment: References and misc. comments added. "Implications" section expanded. REVTeX4, 5 pages, 4 figure

    Remarks on transient photon production in heavy ion collisions

    Full text link
    In this note, we discuss the derivation of a formula that has been used in the literature in order to compute the number of photons emitted by a hot or dense system during a finite time. Our derivation is based on a variation of the standard operator-based SS-matrix approach. The shortcomings of this formula are then emphasized, which leads to a negative conclusion concerning the possibility of using it to predict transient effects for the photon rate.Comment: 13 page

    Technology as an economic catalyst in rural and depressed places in Massachusetts

    Get PDF
    This paper uses case studies, including two cities (Lynn and New Bedford), a sub-city district (Roxbury) and two towns in rural Franklin County (Greenfield and Orange), to examine the role of technology as a potential economic catalyst in rural and depressed places in Massachusetts. Though the five target areas vary in size, density, geographic area, demographic characteristics and economic resources, each exhibits chronic patterns of economic distress related to the decline of manufacturing, construction and other key industries

    Disappearance of Schwinger's string at the charge - monopole "molecule"

    Full text link
    An equivalence of total momentum operator of charge - monopole system to the momentum operator of a symmetrical quantum top is observed. This explicitly shows the string independence of Dirac's quantization condition leading to disappearance of Schwinger's string and reveals some properties of diatomic molecule for this system.Comment: 9 page

    Asymptotic energy profile of a wavepacket in disordered chains

    Get PDF
    We investigate the long time behavior of a wavepacket initially localized at a single site n0n_0 in translationally invariant harmonic and anharmonic chains with random interactions. In the harmonic case, the energy profile <en(t)>ˉ \bar{< e_n(t)>} averaged on time and disorder decays for large nn0|n-n_0| as a power law ˉCnn0η\bar{}\approx C|n-n_0|^{-\eta} where η=5/2\eta=5/2 and 3/2 for initial displacement and momentum excitations, respectively. The prefactor CC depends on the probability distribution of the harmonic coupling constants and diverges in the limit of weak disorder. As a consequence, the moments <mν(t)>< m_{\nu}(t)> of the energy distribution averaged with respect to disorder diverge in time as tβ(ν)t^{\beta(\nu)} for ν2\nu \geq 2, where β=ν+1η\beta=\nu+1-\eta for ν>η1\nu>\eta-1. Molecular dynamics simulations yield good agreement with these theoretical predictions. Therefore, in this system, the second moment of the wavepacket diverges as a function of time despite the wavepacket is not spreading. Thus, this only criteria often considered earlier as proving the spreading of a wave packet, cannot be considered as sufficient in any model. The anharmonic case is investigated numerically. It is found for intermediate disorder, that the tail of the energy profile becomes very close to those of the harmonic case. For weak and strong disorder, our results suggest that the crossover to the harmonic behavior occurs at much larger nn0|n-n_0| and larger time.Comment: To appear in Phys. Rev.
    corecore