The phenomenological equations of motion for the relaxation of ordered phases
of magnetized and polarized crystal phases can be developed in close analogy
with one another. For the case of magnetized systems, the driving magnetic
field intensity toward relaxation was developed by Gilbert. For the case of
polarized systems, the driving electric field intensity toward relaxation was
developed by Khalatnikov. The transport times for relaxation into thermal
equilibrium can be attributed to viscous sound wave damping via
magnetostriction for the magnetic case and electrostriction for the
polarization case.Comment: 5 pages no figures ReVTeX