62 research outputs found

    Generation of ultra-short light pulses by a rapidly ionizing thin foil

    Get PDF
    A thin and dense plasma layer is created when a sufficiently strong laser pulse impinges on a solid target. The nonlinearity introduced by the time-dependent electron density leads to the generation of harmonics. The pulse duration of the harmonic radiation is related to the risetime of the electron density and thus can be affected by the shape of the incident pulse and its peak field strength. Results are presented from numerical particle-in-cell-simulations of an intense laser pulse interacting with a thin foil target. An analytical model which shows how the harmonics are created is introduced. The proposed scheme might be a promising way towards the generation of attosecond pulses. PACS number(s): 52.40.Nk, 52.50.Jm, 52.65.RrComment: Second Revised Version, 13 pages (REVTeX), 3 figures in ps-format, submitted for publication to Physical Review E, WWW: http://www.physik.tu-darmstadt.de/tqe

    Renormalization and asymptotic expansion of Dirac's polarized vacuum

    Full text link
    We perform rigorously the charge renormalization of the so-called reduced Bogoliubov-Dirac-Fock (rBDF) model. This nonlinear theory, based on the Dirac operator, describes atoms and molecules while taking into account vacuum polarization effects. We consider the total physical density including both the external density of a nucleus and the self-consistent polarization of the Dirac sea, but no `real' electron. We show that it admits an asymptotic expansion to any order in powers of the physical coupling constant \alphaph, provided that the ultraviolet cut-off behaves as \Lambda\sim e^{3\pi(1-Z_3)/2\alphaph}\gg1. The renormalization parameter $

    A Dynamical Study of the Friedmann Equations

    Get PDF
    Cosmology is an attracting subject for students but usually difficult to deal with if general relativity is not known. In this article, we first recall the Newtonian derivation of the Friedmann equations which govern the dynamics of our universe and discuss the validity of such a derivation. We then study the equations of evolution of the universe in terms of a dynamical system. This sums up the different behaviors of our universe and enables to address some cosmological problems.Comment: Needs IOP LaTeX class; 17 pages, 9 figure

    Fundamental constants and tests of general relativity - Theoretical and cosmological considerations

    Full text link
    The tests of the constancy of the fundamental constants are tests of the local position invariance and thus of the equivalence principle. We summarize the various constraints that have been obtained and then describe the connection between varying constants and extensions of general relativity. To finish, we discuss the link with cosmology, and more particularly with the acceleration of the Universe. We take the opportunity to summarize various possibilities to test general relativity (but also the Copernican principle) on cosmological scales.Comment: Proceedings of the workshop ``The nature of gravity, confronting theory and experiment in space'', ISSI, Bern, october 200

    Spontaneous Firings of Carnivorous Aquatic Utricularia Traps: Temporal Patterns and Mechanical Oscillations

    Get PDF
    Aquatic species of Utricularia are carnivorous plants living in environments poor in nutrients. Their trapping mechanism has fascinated generations of scientists and is still debated today. It was reported recently that Utricularia traps can fire spontaneously. We show here that these spontaneous firings follow an unexpected diversity of temporal patterns, from “metronomic” traps which fire at fixed time intervals to “random” patterns, displaying more scattered firing times. Some “bursting” traps even combine both aspects, with groups of fast regular firings separated by a variable amount of time. We propose a physical model to understand these very particular behaviors, showing that a trap of Utricularia accomplishes mechanical oscillations, based on continuous pumping and sudden opening of the trap door (buckling). We isolate the key parameters governing these oscillations and discuss the effect of their fluctuations

    Photon mixing in universes with large extra-dimensions

    Get PDF
    In presence of a magnetic field, photons can mix with any particle having a two-photon vertex. In theories with large compact extra-dimensions, there exists a hierachy of massive Kaluza-Klein gravitons that couple to any photon entering a magnetic field. We study this mixing and show that, in comparison with the four dimensional situation where the photon couples only to the massless graviton, the oscillation effect may be enhanced due to the existence of a large number of Kaluza-Klein modes. We give the conditions for such an enhancement and then investigate the cosmological and astrophysical consequences of this phenomenon; we also discuss some laboratory experiments. Axions also couple to photons in the same way; we discuss the effect of the existence of bulk axions in universes with large extra-dimensions. The results can also be applied to neutrino physics with extra-dimensions.Comment: 41 pages, LaTex, 6 figure

    Observation of negative-frequency waves in a water tank: A classical analogue to the Hawking effect?

    Get PDF
    The conversion of positive-frequency waves into negative-frequency waves at the event horizon is the mechanism at the heart of the Hawking radiation of black holes. In black-hole analogues, horizons are formed for waves propagating in a medium against the current when and where the flow exceeds the wave velocity. We report on the first direct observation of negative-frequency waves converted from positive-frequency waves in a moving medium. The measured degree of mode conversion is significantly higher than expected from theory

    Detecting microsatellites within genomes: significant variation among algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites are short, tandemly-repeated DNA sequences which are widely distributed among genomes. Their structure, role and evolution can be analyzed based on exhaustive extraction from sequenced genomes. Several dedicated algorithms have been developed for this purpose. Here, we compared the detection efficiency of five of them (TRF, Mreps, Sputnik, STAR, and RepeatMasker).</p> <p>Results</p> <p>Our analysis was first conducted on the human X chromosome, and microsatellite distributions were characterized by microsatellite number, length, and divergence from a pure motif. The algorithms work with user-defined parameters, and we demonstrate that the parameter values chosen can strongly influence microsatellite distributions. The five algorithms were then compared by fixing parameters settings, and the analysis was extended to three other genomes (<it>Saccharomyces cerevisiae</it>, <it>Neurospora crassa </it>and <it>Drosophila melanogaster</it>) spanning a wide range of size and structure. Significant differences for all characteristics of microsatellites were observed among algorithms, but not among genomes, for both perfect and imperfect microsatellites. Striking differences were detected for short microsatellites (below 20 bp), regardless of motif.</p> <p>Conclusion</p> <p>Since the algorithm used strongly influences empirical distributions, studies analyzing microsatellite evolution based on a comparison between empirical and theoretical size distributions should therefore be considered with caution. We also discuss why a typological definition of microsatellites limits our capacity to capture their genomic distributions.</p

    Delayed Appearance of High Altitude Retinal Hemorrhages

    Get PDF
    When closely examined, a very large amount of climbers exhibit retinal hemorrhages during exposure to high altitudes. The incidence of retinal hemorrhages may be greater than previously appreciated as a definite time lag was observed between highest altitude reached and development of retinal bleeding. Retinal hemorrhages should not be considered warning signs of impending severe altitude illness due to their delayed appearance
    • 

    corecore