15,478 research outputs found

    Evaluation of specific heat for superfluid helium between 0 - 2.1 K based on nonlinear theory

    Get PDF
    The specific heat of liquid helium was calculated theoretically in the Landau theory. The results deviate from experimental data in the temperature region of 1.3 - 2.1 K. Many theorists subsequently improved the results of the Landau theory by applying temperature dependence of the elementary excitation energy. As well known, many-body system has a total energy of Galilean covariant form. Therefore, the total energy of liquid helium has a nonlinear form for the number distribution function. The function form can be determined using the excitation energy at zero temperature and the latent heat per helium atom at zero temperature. The nonlinear form produces new temperature dependence for the excitation energy from Bose condensate. We evaluate the specific heat using iteration method. The calculation results of the second iteration show good agreement with the experimental data in the temperature region of 0 - 2.1 K, where we have only used the elementary excitation energy at 1.1 K.Comment: 6 pages, 3 figures, submitted to Journal of Physics: Conference Serie

    On Inflation and Variation of the Strong Coupling Constant

    Get PDF
    Variation of constants in the very early universe can generate inflation. We consider a scenario where the strong coupling constant was changing in time and where the gluon condensate underwent a phase transition ending the inflation.Comment: 12 pages, 1 figure, accepted for publication in International Journal of Modern Physics

    Spin Response and Neutrino Emissivity of Dense Neutron Matter

    Full text link
    We study the spin response of cold dense neutron matter in the limit of zero momentum transfer, and show that the frequency dependence of the long-wavelength spin response is well constrained by sum-rules and the asymptotic behavior of the two-particle response at high frequency. The sum-rules are calculated using Auxiliary Field Diffusion Monte Carlo technique and the high frequency two-particle response is calculated for several nucleon-nucleon potentials. At nuclear saturation density, the sum-rules suggest that the strength of the spin response peaks at ω≃\omega \simeq 40--60 MeV, decays rapidly for ω≥\omega \geq 100 MeV, and has a sizable strength below 40 MeV. This strength at relatively low energy may lead to enhanced neutrino production rates in dense neutron-rich matter at temperatures of relevance to core-collapse supernova.Comment: 11 pages, 4 figures. Minor change. Published versio

    Suppression of Landau damping via electron band gap

    Full text link
    The pondermotive potential in the X-ray Raman compression can generate an electron band gap which suppresses the Landau damping. The regime is identified where a Langmuir wave can be driven without damping in the stimulated Raman compression. It is shown that the partial wave breaking and the frequency detuning due to the trapped particles would be greatly reduced.Comment: 4 pages, 5 figure

    Theory of plasmon decay in dense plasmas and warm dense matter

    Full text link
    The decay of the Langmuir waves in dense plasmas is not accurately predicted by the prevalent Landau damping theory. A dielectric function theory is introduced, predicting much higher damping than the Landau damping theory. This strong damping is in better agreement with the experimentally observed data in metals. It is shown that the strong plasmon decay leads to the existence of a parameter regime where the backward Raman scattering is unstable while the forward Raman scattering is stable. This regime may be used to create intense x-ray pulses, by means of the the backward Raman compression. The optimal pulse duration and intensity is estimated

    Controlling quasiparticle excitations in a trapped Bose-Einstein condensate

    Full text link
    We describe an approach to quantum control of the quasiparticle excitations in a trapped Bose-Einstein condensate based on adiabatic and diabatic changes in the trap anisotropy. We describe our approach in the context of Landau-Zener transition at the avoided crossings in the quasiparticle excitation spectrum. We show that there can be population oscillation between different modes at the specific aspect ratios of the trapping potential at which the mode energies are almost degenerate. These effects may have implications in the expansion of an excited condensate as well as the dynamics of a moving condensate in an atomic wave guide with a varying width

    Dissipation of dark matter

    Full text link
    Fluids often display dissipative properties. We explore dissipation in the form of bulk viscosity in the cold dark matter fluid. We constrain this model using current data from supernovae, baryon acoustic oscillations and the cosmic microwave background. Considering the isotropic and homogeneous background only, viscous dark matter is allowed to have a bulk viscosity ≲107\lesssim 10^7 Pa⋅\cdots, also consistent with the expected integrated Sachs-Wolfe effect (which plagues some models with bulk viscosity). We further investigate the small-scale formation of viscous dark matter halos, which turns out to place significantly stronger constraints on the dark matter viscosity. The existence of dwarf galaxies is guaranteed only for much smaller values of the dark matter viscosity, ≲10−3\lesssim 10^{-3} Pa⋅\cdots.Comment: 10 pages, 3 figures, published in PR

    Equation of state of an interacting Bose gas at finite temperature: a Path Integral Monte Carlo study

    Full text link
    By using exact Path Integral Monte Carlo methods we calculate the equation of state of an interacting Bose gas as a function of temperature both below and above the superfluid transition. The universal character of the equation of state for dilute systems and low temperatures is investigated by modeling the interatomic interactions using different repulsive potentials corresponding to the same s-wave scattering length. The results obtained for the energy and the pressure are compared to the virial expansion for temperatures larger than the critical temperature. At very low temperatures we find agreement with the ground-state energy calculated using the diffusion Monte Carlo method.Comment: 7 pages, 6 figure

    Universal monopole scaling near transitions from the Coulomb phase

    Full text link
    Certain frustrated systems, including spin ice and dimer models, exhibit a Coulomb phase at low temperatures, with power-law correlations and fractionalized monopole excitations. Transitions out of this phase, at which the effective gauge theory becomes confining, provide examples of unconventional criticality. This work studies the behavior at nonzero monopole density near such transitions, using scaling theory to arrive at universal expressions for the crossover phenomena. For a particular transition in spin ice, quantitative predictions are made through a duality mapping to the XY model, and confirmed using Monte Carlo simulations.Comment: 4.5 pages, 4 figure

    Ringing the Randall-Sundrum braneworld: metastable gravity wave bound states

    Full text link
    In the Randall-Sundrum scenario, our universe is a 4-dimensional `brane' living in a 5-dimensional bulk spacetime. By studying the scattering of bulk gravity waves, we show that this brane rings with a characteristic set of complex quasinormal frequencies, much like a black hole. To a bulk observer these modes are interpreted as metastable gravity wave bound states, while a brane observer views them as a discrete spectrum of decaying massive gravitons. Potential implications of these scattering resonances are discussed.Comment: References and misc. comments added. "Implications" section expanded. REVTeX4, 5 pages, 4 figure
    • …
    corecore