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Evaluation of specific heat for superfluid helium

between 0 - 2.1 K based on nonlinear theory

Shosuke Sasaki
Shizuoka Institute of Science and Technology, Fukuroi, Shizuoka, 437-8555, Japan

E-mail: sasaki@ns.sist.ac.jp

Abstract. The specific heat of liquid helium was calculated theoretically in the Landau theory
[1]. The results deviate from experimental data in the temperature region of 1.3 - 2.1 K. Many
theorists subsequently improved the results of the Landau theory by applying temperature
dependence of the elementary excitation energy [2], [3]. As well known, many-body system
has a total energy of Galilean covariant form. Therefore, the total energy of liquid helium has
a nonlinear form for the number distribution function. The function form can be determined
using the excitation energy at zero temperature and the latent heat per helium atom at zero
temperature. The nonlinear form produces new temperature dependence for the excitation
energy from Bose condensate. We evaluate the specific heat using iteration method. The
calculation results of the second iteration show good agreement with the experimental data in
the temperature region of 0 - 2.1 K, where we have only used the elementary excitation energy
at 1.1 K.

1. Nonlinear form of total energy
Liquid helium system has a total Hamiltonian as

H =
∑
p

p2

2m
a∗pap +

1
2V

∑
p,q,k

g(k)a∗p+ka∗q−kapaq (1)

where m is the mass of a helium atom, a∗p and ap respectively signify the creation
and annihilation operators. We examine the general form of the total energy via the
unitary transformation U diagonalizing the Hamiltonian H. All eigenstates are described as
| eigenstate >= Ua∗p1

a∗p2
a∗p3

· · · a∗pN
| 0 > where | 0 > denotes the vacuum state. New creation

and annihilation operators are defined as

A∗
p = Ua∗pU−1, Ap = UapU−1 (2)

which indicate the creation and annihilation operators of a quasi-particle. We designate this
quasi-particle as a ”dressed boson”. The dressed boson number operator is defined as

np = A∗
pAp. (3)

The total number conservation and the total momentum conservation are expressed as
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N =
∑
q

a∗qaq = U
∑
q

a∗qaqU−1 =
∑
q

nq and Q =
∑
q

qa∗qaq = U
∑
q

qa∗qaqU−1 =
∑
q

qnq (4)

That is to say, the total number of helium atoms is equal to the total number of dressed bosons
and the total momentum of helium atoms is equal to the total momentum of dressed bosons.

The total energy of the system is a sum of the kinetic energy K of the center of mass and
Galilean invariant terms X : K = Q2

2M where M is the total mass of liquid helium.

H = K + X =
∑

p pnp·
∑

q qnq

2M
+ X =

∑
p

p2

2m
np − 1

2M

∑
p,q

1
2
(p − q)2npnq + X (5)

=
∑
p

p2

2m
np + (Galilean invariant terms) (6)

where Galilean invariant terms are described only by relative momenta of dressed bosons:

(Galilean invariant terms) =
1
N

∑
p,q

f2(p−q)npnq +
1

N2

∑
p,q,k

f3(p−q,p−k)npnqnk + . . . (7)

Substitution of Eq.(7) into Eq.(6) yields

E =
∑
p

p2

2m
np +

1
N

∑
p,q

f(p − q)npnq (8)

where we neglect higher terms because three-particle collision is a rare case for diluteness of
liquid helium. The single excitation state has a distribution of {n0 = N − 1, np = 1} and
therefore its total energy is derived from Eq.(8) as follows:

E = f(0)N +
p2

2m
+ 2(f(p) − f(0)) (9)

where we have used 1/N ≈ 0 and the spherical symmetric property of the function f(p). Therein,
the latent heat at zero Kelvin is equal to −Nf(0). Accordingly the elementary excitation energy
at zero Kelvin is given by ϵ0p = p2

2m + 2(f(p)− f(0)). This relation engenders a function form of
the nonlinear term as [4]

f(p) =
1
2
(ϵ0p −

p2

2m
) + f(0). (10)

2. Coupled equation determining distribution of dressed bosons
The energy of one dressed boson is an increment value of the total energy when one dressed
boson is added to the system. Accordingly the dressed boson energy is defined as ωp = δE/δnp.
The calculation result for the derivative of Eq. (8) shows

ωp(T ) =
p2

2m
+

2
N

∑
q

f(p − q)nq − 1
N2

∑
s,t

f(s − t)nsnt (11)

where we have used f(p − q) = f(q − p). The distribution function is determined as

np =
1

exp((ωp(T ) − µ)/(kBT )) − 1
(12)
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We can obtain approximate solutions of the coupled equations of (11) and (12) via the
iteration method [4]. We adopt the Landau distribution function as the zero-th step distribution:

n0(p, T ) =
1

exp(ϵ0p/(kBT )) − 1
(13)

The j-th step solutions are derived from the (j-1)-th distribution function as follows:

ωj(p, T ) =
p2

2m
+

2
N

∑
q

f(p − q)nj−1(q, T ) − 1
N2

∑
s,t

f(s − t)nj−1(s, T )nj−1(t, T ) (14)

This j-th energy form produces the j-th distribution function:

nj(p, T ) =
1

exp((ωj(p, T ) − ωj(0, T ))/(kBT )) − 1
(15)

Therein the excitation energy from the Bose-Einstein condensate of dressed bosons is expressed
as

ϵj(p, T ) = ωj(p, T ) − ωj(0, T ). (16)

We can evaluate the second step solutions ϵ2(p, T ) and n2(p, T ) via the iteration processes from
the zero-th step distribution.

3. Evaluation of specific heat
In our iteration method, ϵ0p means the elementary excitation energy at zero temperature. We
have used the experimental values of excitation energy at 1.1 K for ϵ0p because the temperature
dependences are extremely small in the temperature region lower than 1.1K. Using the excitation
energy ϵ2(p, T ) and the distribution function n2(p, T ) in the second step of the iteration, we can
calculate the second step approximation values of specific heat as follows [4];

CP = TkB
4π

(2πh̄)3

{
∂V
∂T

}
P

∫ ∞
0

{
log(1 + n2(p, T )) + ϵ2(p,T )

kBT n2(p, T )
}
p2dp +

+ 4πV
(2πh̄)3

∫ ∞
0 (n2(p, T ))2exp(ϵ2(p, T )/(kBT ))

{{
ϵ2(p,T )
kBT

}2
kB − ϵ2(p,T )

kBT

{
∂ϵ2(p,T )

∂T

}
P

}
p2dp (17)

The evaluated results are shown in Fig.1 and Fig.2.

log10 Cp

T [K]

Figure 1. CP derived from nonlinear theory.
The vertical scale indicates log10CP where CP

is measured by the unit of [J/(g K)]

Cp[J/(g K)]

T [K]

Figure 2. The curve expresses the calculated
values. The dots colored with red indicate
experimental data [5].
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CS [J/(mol K)]

Nonlinear Theory

BCY Theory

BD Theory

log10((Tλ-T)/Tλ)

Figure 3. The horizontal axis indicates log10((Tλ − T )/Tλ). The large dots colored with blue
indicate the experimental data [5], and the small dots with red are measured by Lipa et al [7].
BD theory indicates the results in the reference of [3]. BCY theory indicates the results in the
reference of [2]. The curve of the nonlinear theory is the results of the reference [6]

Figure 1 and 2 indicate the second step results of specific heat via the nonlinear theory. The
curves express the calculated values. The dots with red indicate experimental data [5]. As
shown in Fig.1 and Fig.2, the theoretical values of the second step are in good agreement with
the experimental data for T < 2.1K. It is noteworthy that the present calculation uses the
experimental values of excitation energy only for the temperature 1.1 K. Of course the iteration
method is insufficient in close vicinity of the λ transition temperature. We have discussed origin
of the logarithmic divergence at the λ point in the previous paper [6]. It is clarified that the
logarithmic divergence is caused by the nonlinear mechanism of the total energy. The calculation
results are shown in Fig. 3.

Thus the nonlinear theory has well explained the temperature dependence of the specific heat
of superfluid helium for all temperature region. Accordingly the nonlinear mechanism of total
energy is important for understanding the properties of liquid helium.
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