1,545 research outputs found

    Scaffolded reaching experiences encourage grasping activity in infants at high risk for autism

    Get PDF
    Recent findings suggest impaired motor skill development during infancy in children later diagnosed with autism spectrum disorders (ASD). However, it remains unclear whether infants at high familial risk for ASD would benefit from early interventions targeting the motor domain. The current study investigated this issue by providing 3-month-old infants at high familial risk for ASD with training experiences aimed at facilitating independent reaching. A group of 17 high-risk (HR) infants received 2 weeks of scaffolded reaching experiences using "sticky mittens," and was compared to 72 low-risk (LR) infants experiencing the same or alternative training procedures. Results indicate that HR infants - just like LR infants - show an increase in grasping activity following "sticky mittens" training. In contrast to LR infants, evidence that motor training encouraged a preference for faces in HR infants was inconclusive

    A guided search non-dominated sorting genetic algorithm for the multi-objective university course timetabling problem

    Get PDF
    Copyright @ Springer-Verlag Berlin Heidelberg 2011.The university course timetabling problem is a typical combinatorial optimization problem. This paper tackles the multi-objective university course timetabling problem (MOUCTP) and proposes a guided search non-dominated sorting genetic algorithm to solve the MOUCTP. The proposed algorithm integrates a guided search technique, which uses a memory to store useful information extracted from previous good solutions to guide the generation of new solutions, and two local search schemes to enhance its performance for the MOUCTP. The experimental results based on a set of test problems show that the proposed algorithm is efficient for solving the MOUCTP

    Nonlinear dynamics of coupled transverse-rotational waves in granular chains

    Get PDF
    The nonlinear dynamics of coupled waves in one-dimensional granular chains with and without a substrate is theoretically studied accounting for quadratic nonlinearity. The multiple time scale method is used to derive the nonlinear dispersion relations for infinite granular chains and to obtain the wave solutions for semiinfinite systems. It is shown that the sum-frequency and difference-frequency components of the coupled transverse-rotational waves are generated due to their nonlinear interactions with the longitudinal wave. Nonlinear resonances are not present in the chain with no substrate where these frequency components have low amplitudes and exhibit beating oscillations. In the chain positioned on a substrate two types of nonlinear resonances are predicted. At resonance, the fundamental frequency wave amplitudes decrease and the generated frequency component amplitudes increase along the chain, accompanied by the oscillations due to the wave numbers asynchronism. The results confirm the possibility of a highly efficient energy transfer between the waves of different frequencies, which could find applications in the design of acoustic devices for energy transfer and energy rectification

    Biwhitening Reveals the Rank of a Count Matrix

    Full text link
    Estimating the rank of a corrupted data matrix is an important task in data analysis, most notably for choosing the number of components in PCA. Significant progress on this task was achieved using random matrix theory by characterizing the spectral properties of large noise matrices. However, utilizing such tools is not straightforward when the data matrix consists of count random variables, e.g., Poisson, in which case the noise can be heteroskedastic with an unknown variance in each entry. In this work, we consider a Poisson random matrix with independent entries, and propose a simple procedure termed \textit{biwhitening} for estimating the rank of the underlying signal matrix (i.e., the Poisson parameter matrix) without any prior knowledge. Our approach is based on the key observation that one can scale the rows and columns of the data matrix simultaneously so that the spectrum of the corresponding noise agrees with the standard Marchenko-Pastur (MP) law, justifying the use of the MP upper edge as a threshold for rank selection. Importantly, the required scaling factors can be estimated directly from the observations by solving a matrix scaling problem via the Sinkhorn-Knopp algorithm. Aside from the Poisson, our approach is extended to families of distributions that satisfy a quadratic relation between the mean and the variance, such as the generalized Poisson, binomial, negative binomial, gamma, and many others. This quadratic relation can also account for missing entries in the data. We conduct numerical experiments that corroborate our theoretical findings, and showcase the advantage of our approach for rank estimation in challenging regimes. Furthermore, we demonstrate the favorable performance of our approach on several real datasets of single-cell RNA sequencing (scRNA-seq), High-Throughput Chromosome Conformation Capture (Hi-C), and document topic modeling

    Anomalous diffusion in a random nonlinear oscillator due to high frequencies of the noise

    Full text link
    We study the long time behaviour of a nonlinear oscillator subject to a random multiplicative noise with a spectral density (or power-spectrum) that decays as a power law at high frequencies. When the dissipation is negligible, physical observables, such as the amplitude, the velocity and the energy of the oscillator grow as power-laws with time. We calculate the associated scaling exponents and we show that their values depend on the asymptotic behaviour of the external potential and on the high frequencies of the noise. Our results are generalized to include dissipative effects and additive noise.Comment: Expanded version of Proceedings StatPhys-Kolkata V

    Lack of significant association between mutations of KCNJ10 or FOXI1 and SLC26A4 mutations in pendred syndrome/enlarged vestibular aqueducts

    Get PDF
    Pendred syndrome is a common autosomal recessive disorder causing deafness. Features include sensorineural hearing impairment, goitre, enlarged vestibular aqueducts (EVA) and occasionally Mondini dysplasia. Hearing impairment and EVA may occur in the absence of goitre or thyroid dyshormonogensis in a condition known as non-syndromic EVA. A significant number of patients with Pendred syndrome and non-syndromic EVA show only one mutation in SLC26A4. Two genes, KCNJ10, encoding an inwardly rectifying potassium channel and FOXI1, a transcriptional factor gene, are thought to play a role in the disease phenotypes

    Modes of Oscillation in Radiofrequency Paul Traps

    Full text link
    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general three-dimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We derive analytically the micromotion amplitude of the ions, rigorously proving well-known experimental observations. We use a method of infinite determinants to find the modes which diagonalize the linearized time-dependent dynamical problem. This allows obtaining explicitly the ('Floquet-Lyapunov') transformation to coordinates of decoupled linear oscillators. We demonstrate the utility of the method by analyzing the modes of a small `peculiar' crystal in a linear Paul trap. The calculations can be readily generalized to multispecies ion crystals in general multipole traps, and time-dependent quantum wavefunctions of ion oscillations in such traps can be obtained.Comment: 24 pages, 3 figures, v2 adds citations and small correction

    Analytic binary alloy volume-concentration relations and the deviation from Zen`s law

    Full text link
    Alloys expand or contract as concentrations change, and the resulting relationship between atomic volume and alloy content is an important property of the solid. While a well-known approximation posits that the atomic volume varies linearly with concentration (Zen`s law), the actual variation is more complicated. Here we use an apparent size of the solute (solvent) atom and the elasticity to derive explicit analytical expressions for the atomic volume of binary solid alloys. Two approximations, continuum and terminal, are proposed. Deviations from Zen`s law are studied for 22 binary alloy systems
    • …
    corecore