914 research outputs found

    Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration

    Get PDF
    Transcription factor Nrf2 and its repressor Keap1 regulate a network of cytoprotective genes involving more than 1% of the genome, their best known targets being drug-metabolizing and antioxidant genes. Here we demonstrate a novel role for this pathway in directly regulating mitochondrial bioenergetics in murine neurons and embryonic fibroblasts. Loss of Nrf2 leads to mitochondrial depolarisation, decreased ATP levels and impaired respiration, whereas genetic activation of Nrf2 increases the mitochondrial membrane potential and ATP levels, the rate of respiration and the efficiency of oxidative phosphorylation. We further show that Nrf2-deficient cells have increased production of ATP in glycolysis, which is then used by the F1Fo-ATPase for maintenance of the mitochondrial membrane potential. While the levels and in vitro activities of the respiratory complexes are unaffected by Nrf2 deletion, their activities in isolated mitochondria and intact live cells are substantially impaired. In addition, the rate of regeneration of NADH after inhibition of respiration is much slower in Nrf2-knockout cells than in their wild-type counterparts. Taken together, these results show that Nrf2 directly regulates cellular energy metabolism through modulating the availability of substrates for mitochondrial respiration. Our findings highlight the importance of efficient energy metabolism in Nrf2-mediated cytoprotection

    Looking to Score: The Dissociation of Goal Influence on Eye Movement and Meta-Attentional Allocation in a Complex Dynamic Natural Scene

    Get PDF
    Several studies have reported that task instructions influence eye-movement behavior during static image observation. In contrast, during dynamic scene observation we show that while the specificity of the goal of a task influences observers’ beliefs about where they look, the goal does not in turn influence eye-movement patterns. In our study observers watched short video clips of a single tennis match and were asked to make subjective judgments about the allocation of visual attention to the items presented in the clip (e.g., ball, players, court lines, and umpire). However, before attending to the clips, observers were either told to simply watch clips (non-specific goal), or they were told to watch the clips with a view to judging which of the two tennis players was awarded the point (specific goal). The results of subjective reports suggest that observers believed that they allocated their attention more to goal-related items (e.g. court lines) if they performed the goal-specific task. However, we did not find the effect of goal specificity on major eye-movement parameters (i.e., saccadic amplitudes, inter-saccadic intervals, and gaze coherence). We conclude that the specificity of a task goal can alter observer’s beliefs about their attention allocation strategy, but such task-driven meta-attentional modulation does not necessarily correlate with eye-movement behavior

    Quality of life in Type 1 (insulin-dependent) diabetic patients prior to and after pancreas and kidney transplantation in relation to organ function

    Get PDF
    Improvement of the quality of life in Type 1 (insulin-dependent) diabetic patients with severe late complications is one of the main goals of pancreas and/or kidney grafting. To assess the influences of these treatment modalities on the different aspects of the quality of life a cross-sectional study in 157 patients was conducted. They were categorized into patients pre-transplant without dialysis (n=29; Group A), pre-transplant under dialysis (n=44; Group B), post-transplant with pancreas and kidney functioning (n=31; Group C), post-transplant with functioning kidney, but insulin therapy (n=29; Group D), post-transplant under dialysis and insulin therapy again (n=15; Group E) and patients after single pancreas transplantation and rejection, with good renal function, but insulin therapy (n=9; Group F). All patients answered a mailed, self-administered questionnaire (217 questions) consisting of a broad spectrum of rehabilitation criteria. The results indicate a better quality of life in Groups C and D as compared to the other groups. In general the scores are highest in C, but without any significant difference to D. Impressive significant differences between C or D and the other groups were found especially in their satisfaction with physical capacity, leisure-time activities or the overall quality of life. The satisfaction with the latter is highest in C (mean±SEM: 4.0±0.2 on a 1 to 5-rating scale; significantly different from A: 3.1±0.1, B: 2.7±0.2 and E: 2.6±0.3; p<0.01), followed by D (3.8±0.2; significantly different from B and E; p<0.01). Group F shows a mean of 3.1±0.4, which is not significantly different from C. The percentages of patients in each group, who are not working: A: 38 %, B: 64 %, C: 74 %, D: 66 %, E: 87 % and F: 78 % indicate that there is no marked improvement in the vocational situation after successful grafting

    Chromatic Illumination Discrimination Ability Reveals that Human Colour Constancy Is Optimised for Blue Daylight Illuminations

    Get PDF
    The phenomenon of colour constancy in human visual perception keeps surface colours constant, despite changes in their reflected light due to changing illumination. Although colour constancy has evolved under a constrained subset of illuminations, it is unknown whether its underlying mechanisms, thought to involve multiple components from retina to cortex, are optimised for particular environmental variations. Here we demonstrate a new method for investigating colour constancy using illumination matching in real scenes which, unlike previous methods using surface matching and simulated scenes, allows testing of multiple, real illuminations. We use real scenes consisting of solid familiar or unfamiliar objects against uniform or variegated backgrounds and compare discrimination performance for typical illuminations from the daylight chromaticity locus (approximately blue-yellow) and atypical spectra from an orthogonal locus (approximately red-green, at correlated colour temperature 6700 K), all produced in real time by a 10-channel LED illuminator. We find that discrimination of illumination changes is poorer along the daylight locus than the atypical locus, and is poorest particularly for bluer illumination changes, demonstrating conversely that surface colour constancy is best for blue daylight illuminations. Illumination discrimination is also enhanced, and therefore colour constancy diminished, for uniform backgrounds, irrespective of the object type. These results are not explained by statistical properties of the scene signal changes at the retinal level. We conclude that high-level mechanisms of colour constancy are biased for the blue daylight illuminations and variegated backgrounds to which the human visual system has typically been exposed

    Object Detection Through Exploration With A Foveated Visual Field

    Get PDF
    We present a foveated object detector (FOD) as a biologically-inspired alternative to the sliding window (SW) approach which is the dominant method of search in computer vision object detection. Similar to the human visual system, the FOD has higher resolution at the fovea and lower resolution at the visual periphery. Consequently, more computational resources are allocated at the fovea and relatively fewer at the periphery. The FOD processes the entire scene, uses retino-specific object detection classifiers to guide eye movements, aligns its fovea with regions of interest in the input image and integrates observations across multiple fixations. Our approach combines modern object detectors from computer vision with a recent model of peripheral pooling regions found at the V1 layer of the human visual system. We assessed various eye movement strategies on the PASCAL VOC 2007 dataset and show that the FOD performs on par with the SW detector while bringing significant computational cost savings.Comment: An extended version of this manuscript was published in PLOS Computational Biology (October 2017) at https://doi.org/10.1371/journal.pcbi.100574
    corecore