187 research outputs found

    Given frustrations with academic structures, how can we build a more human-centered open science?

    Get PDF
    Open science has finally hit the mainstream. Alex Lancaster looks at the emerging criticisms leveled against how we publish and disseminate science and argues it may be time to reframe the open science project. Rather than relying on instrumentalist language of “carrot-and-sticks” and “rewards-and-incentives” we should instead focus on the actual working conditions for scientists and the political economy in which they are embedded

    Gigantic transmission band edge resonance in periodic stacks of anisotropic layers

    Full text link
    We consider Fabry-Perot cavity resonance in periodic stacks of anisotropic layers with misaligned in-plane anisotropy at the frequency close to a photonic band edge. We show that in-plane dielectric anisotropy can result in a dramatic increase in field intensity and group delay associated with the transmission resonance. The field enhancement appears to be proportional to forth degree of the number N of layers in the stack. By contrast, in common periodic stacks of isotropic layers, those effects are much weaker and proportional to N^2. Thus, the anisotropy allows to drastically reduce the size of the resonance cavity with similar performance. The key characteristic of the periodic arrays with the gigantic transmission resonance is that the dispersion curve omega(k)at the photonic band edge has the degenerate form Delta(omega) ~ Delta(k)^4, rather than the regular form Delta(omega) ~ Delta(k)^2. This can be realized in specially arranged stacks of misaligned anisotropic layers. The degenerate band edge cavity resonance with similar outstanding properties can also be realized in a waveguide environment, as well as in a linear array of coupled multimode resonators, provided that certain symmetry conditions are in place.Comment: To be submitted to Phys. Re

    Luminidependens (LD) is an Arabidopsis protein with prion behavior

    Get PDF
    Prion proteins provide a unique mode of biochemical memory through self-perpetuating changes in protein conformation and function. They have been studied in fungi and mammals, but not yet identified in plants. Using a computational model, we identified candidate prion domains (PrDs) in nearly 500 plant proteins. Plant flowering is of particular interest with respect to biological memory, because its regulation involves remembering and integrating previously experienced environmental conditions. We investigated the prion-forming capacity of three prion candidates involved in flowering using a yeast model, where prion attributes are well defined and readily tested. In yeast, prions heritably change protein functions by templating monomers into higher-order assemblies. For most yeast prions, the capacity to convert into a prion resides in a distinct prion domain. Thus, new prion-forming domains can be identified by functional complementation of a known prion domain. The prion-like domains (PrDs) of all three of the tested proteins formed higher-order oligomers. Uniquely, the Luminidependens PrD (LDPrD) fully replaced the prion-domain functions of a well-characterized yeast prion, Sup35. Our results suggest that prion-like conformational switches are evolutionarily conserved and might function in a wide variety of normal biological processes.Howard Hughes Medical InstituteG. Harold and Leila Y. Mathers FoundationEleanor Schwartz Charitable FoundationNational Science Foundation (U.S.). Graduate Research Fellowship Progra

    Maisonneuve Fracture

    Get PDF
    Download PD

    Behavioural Indicators of Intra- and Inter-Specific Competition: Sheep Co-Grazing with Guanaco in the Patagonian Steppe

    Get PDF
    In extensive livestock production, high densities may inhibit regulation processes, main- taining high levels of intraspecific competition over time. During competition, individuals typically modify their behaviours, particularly feeding and bite rates, which can therefore be used as indicators of competition. Over eight consecutive seasons, we investigated if variation in herd density, food availability, and the presence of a potential competitor, the guanaco (Lama guanicoe), was related with behavioural changes in domestic sheep in Chilean Patagonia. Focal sampling, instantaneous scan sampling, measures of bite and movement rates were used to quantify behavioural changes in domestic sheep. We found that food availability increased time spent feeding, while herd density was associated with an increase in vigilant behaviour and a decrease in bite rate, but only when food availability was low. Guanaco presence appeared to have no impact on sheep behaviour. Our results suggest that the observed behavioural changes in domestic sheep are more likely due to intraspecific competition rather than interspecific competition. Consideration of intraspecific competition where guanaco and sheep co-graze on pastures could allow management strategies to focus on herd density, according to rangeland carrying capacity

    Slow light in photonic crystals

    Full text link
    The problem of slowing down light by orders of magnitude has been extensively discussed in the literature. Such a possibility can be useful in a variety of optical and microwave applications. Many qualitatively different approaches have been explored. Here we discuss how this goal can be achieved in linear dispersive media, such as photonic crystals. The existence of slowly propagating electromagnetic waves in photonic crystals is quite obvious and well known. The main problem, though, has been how to convert the input radiation into the slow mode without loosing a significant portion of the incident light energy to absorption, reflection, etc. We show that the so-called frozen mode regime offers a unique solution to the above problem. Under the frozen mode regime, the incident light enters the photonic crystal with little reflection and, subsequently, is completely converted into the frozen mode with huge amplitude and almost zero group velocity. The linearity of the above effect allows to slow light regardless of its intensity. An additional advantage of photonic crystals over other methods of slowing down light is that photonic crystals can preserve both time and space coherence of the input electromagnetic wave.Comment: 96 pages, 12 figure
    • …
    corecore