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Feed-forward regulation adaptively evolves via
dynamics rather than topology when there is
intrinsic noise
Kun Xiong 1, Alex K. Lancaster 2, Mark L. Siegal 3 & Joanna Masel 4

In transcriptional regulatory networks (TRNs), a canonical 3-node feed-forward loop (FFL) is

hypothesized to evolve to filter out short spurious signals. We test this adaptive hypothesis

against a novel null evolutionary model. Our mutational model captures the intrinsically high

prevalence of weak affinity transcription factor binding sites. We also capture stochasticity

and delays in gene expression that distort external signals and intrinsically generate noise.

Functional FFLs evolve readily under selection for the hypothesized function but not in

negative controls. Interestingly, a 4-node “diamond” motif also emerges as a short spurious

signal filter. The diamond uses expression dynamics rather than path length to provide fast

and slow pathways. When there is no idealized external spurious signal to filter out, but only

internally generated noise, only the diamond and not the FFL evolves. While our results

support the adaptive hypothesis, we also show that non-adaptive factors, including the

intrinsic expression dynamics, matter.
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Transcriptional regulatory networks (TRNs) are integral to
development and physiology, and underlie all complex
traits. An intriguing finding about TRNs is that certain

topological “motifs” of interconnected transcription factors (TFs)
are overrepresented relative to random re-wirings that preserve
the frequency distribution of connections1,2. The significance of
this finding remains open to debate.

The canonical example is the feed-forward loop (FFL), in
which TF A regulates a target C both directly, and indirectly via
TF B, and no regulatory connections exist in the opposite
direction1–3. Each of the three regulatory interactions in an FFL
can be either activating or repressing, so there are eight distinct
kinds of FFLs (Supplementary Fig. 1)4. Given the eight fre-
quencies expected from the ratio of activators to repressors, two
of these kinds of FFLs are significantly overrepresented4. In this
paper, we focus on one of these two overrepresented types,
namely the type 1 coherent FFL (C1-FFL), in which all three links
are activating rather than repressing (Supplementary Fig. 1, left).
C1-FFL motifs are an active part of systems biology research
today, e.g. they are used to infer the function of specific regulatory
pathways5,6.

The overrepresentation of FFLs in observed TRNs is normally
explained in terms of selection favoring a function of FFLs.
Specifically, the most common adaptive hypothesis is that cells
often benefit from ignoring short-lived signals and responding
only to durable signals3,4,7. Evidence that C1-FFLs can perform
this function comes from the behavior both of theoretical models4

and of in vivo gene circuits7. A C1-FFL can achieve this function
when its regulatory logic is that of an AND gate, i.e. both the
direct path from A to C and the indirect path from A to B to C
must be activated before the response is triggered. In this case, the
response will only be triggered if, by the time the signal trickles
through the longer path, it is still active on the shorter path as
well. This yields a response to long-lived signals but not short-
lived signals.

However, just because a behavior is observed, we cannot
conclude that the behavior is a historical consequence of past
selection favoring that behavior8,9. The explanatory power of this
adaptive hypothesis of filtering out short-lived and spurious sig-
nals needs to be compared to that of alternative, nonadaptive
hypotheses10. The overrepresentation of C1-FFLs might be a
byproduct of some other behavior that was the true target of
selection11. Alternatively, it might be an intrinsic property of
TRNs generated by mutational processes—gene duplication pat-
terns have been found to enrich for FFLs in general12, although
not yet C1-FFLs in particular. Adaptationist claims about TRN
organization have been accused of being just-so stories, with
adaptive hypotheses still in need of testing against an appropriate
null model of network evolution13–23.

Here we develop such a computational null model of TRN
evolution, and apply it to the case of C1-FFL overrepresentation.
We include sufficient realism in our model of cis-regulatory
evolution to capture the nonadaptive effects of mutation in
shaping TRNs. In particular, we consider weak TF binding sites
(TFBSs) that can easily appear de novo by chance alone, and from
there be selected to bind a TF more strongly, as well as simulating
mutations that duplicate and delete genes.

Our TRN model also captures the stochasticity of gene
expression, which causes the number of mRNAs and hence
proteins to fluctuate24,25. This is important, because demand for
spurious signal filtering and hence C1-FFL function may arise not
just from external signals, but also from internal fluctuations.
Stochasticity in gene expression also shapes how external spur-
ious signals are propagated. Stochasticity is a constraint on what
TRNs can achieve, but it can also be adaptively co-opted in
evolution26; either way, it might underlie the evolution of certain

motifs. Most other computational models of TRN evolution that
consider gene expression as the major phenotype do not simulate
stochasticity in gene expression (but see three notable excep-
tions27–29).

Given the potential importance of the details of stochastic and
nonstochastic dynamics, we constrain the parameter ranges explored
by mutation to values taken from data mostly on Saccharomyces
cerevisiae. Different parameter values can cause the same network
topology to display different dynamic behaviors; different topologies
can also display similar dynamic behaviors21,30–32.

Here we ask whether AND-gated C1-FFLs evolve as a response
to selection for filtering out short and spurious external signals.
Our new model allows us to compare the frequencies of network
motifs arising in the presence of this hypothesized evolutionary
cause to motif frequencies arising under nonadaptive control
simulations, i.e. evolution under conditions that lack short
spurious external signals while controlling both for mutational
biases and for less specific forms of selection. We also ask whether
other network motifs evolve to filter out short spurious signals,
and if so, whether different conditions favor the appearance of
different motifs during evolution.

Results
Model overview. We simulate the dynamics of TRNs as the TFs
activate and repress one another’s transcription over a timescale
we refer to as “gene expression time”. This generates the gene
expression phenotypes on which selection acts over longer evo-
lutionary timescales. For each moment in gene expression time,
we simulate the numbers of nuclear and cytoplasmic mRNAs in a
cell, the protein concentrations, and the chromatin state of each
gene in a haploid genome. Transitions between three possible
chromatin states—Repressed, Intermediate, and Active—are a
stochastic function of TF binding, and transcription initiation
from the Active state is also stochastic. An overview of the model
is shown in Fig. 1, with details given in the Methods. TF binding
to the cis-regulatory sequence of a gene affects chromatin, which
affects transcription rates, eventually feeding back to affect the
concentration of TFs and hence their binding. Gene expression is
further controlled by five gene-specific parameters: mean dura-
tion of transcriptional bursts, mRNA degradation rate, protein
production rate, protein degradation rate, and gene length (which
affects delays in transcription and translation).

We model five types of mutations: (1) to the five gene-specific
parameters, (2) to the cis-regulatory sequences, (3) to the
consensus binding sequences, (4) to the maximum binding
affinity of TFs, and (5) duplication/deletion of genes. An external
signal (Fig. 1a, red) is treated like another TF, and the
concentration of an effector gene (Fig. 1a, blue) in response is a
primary determinant of fitness, combined with a cost associated
with gene expression (Fig. 1b). Mutants replace resident
genotypes as a function of the difference in estimated fitness
(Fig. 1c). Parameter values, taken as far as possible from S.
cerevisiae, are summarized in Supplementary Table 1. Mutation
rates are summarized in Supplementary Table 2.

C1-FFLs must be AND-gated to achieve their putative
function. To allow the regulatory logic to evolve between AND-
gated and other regulatory logic, we make effector gene
expression require at least two TFBSs to be occupied by
activators. An AND-gate is then present when the only way to
have two TFs bound is for them to be different TFs (Fig. 2). All
other genes are AND-gate-incapable, meaning that their activa-
tion requires only one TFBS to be occupied by an activator.

We select on the ability to recognize signals. In environment 1,
expressing the effector is beneficial, and in environment 2 it is
deleterious (see Methods for details). We select for TRNs that
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Fig. 1 Overview of the model. a Simulation of gene expression phenotypes. We show a simple TRN with one TF (yellow) and one effector gene (blue), with
arrows for major biological processes simulated in the model. b Phenotype–fitness relationship. Fitness is primarily determined by the concentration of an
effector protein (here shown as beneficial as in Eq. 4, but potentially deleterious in a different environment as in Eq. 5), with a secondary component
coming from the cost of gene expression (proportional to the rate of protein production), combined to give an instantaneous fitness at each moment in
gene expression time. c Evolutionary simulation. A single resident genotype is replaced when a mutant’s estimated fitness is high enough. Stochastic gene
expression adds uncertainty to the estimated fitness, allowing less fit mutants to occasionally replace the resident, capturing the flavor of genetic drift
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Fig. 2 The distribution of TFBSs determines the regulatory logic of effector expression. We use the pattern of TFBSs (red and yellow bars along black cis-
regulatory sequences) to classify the regulatory logic of the effector gene. C1-FFLs are classified first by whether or not they are capable of simultaneously
binding the signal and the TF (left 4 vs. right 3; see Supplementary Fig. 2 and Supplementary Methods for details about overlapping TFBSs). Further
classification is based on whether either the signal or the TF has multiple nonoverlapping TFBSs, allowing it to activate the effector without help from the
other (solid arrow). The three subtypes to the right (where the signal and TF cannot bind simultaneously) are rarely seen; they are unless otherwise
indicated included in “Any logic” and “non-AND-gated” tallies, but are not analyzed separately. Two of them involve emergent repression, creating
incoherent feed-forward loops (see Supplementary Fig. 1 for full FFL naming scheme). Emergent repression occurs when the binding of one activator to its
only TFBS prevents the other activator from binding to either of its two TFBSs, hence preventing simultaneous binding of two activators
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take information from the signal and correctly decide whether to
express the effector. Fitness is a weighted average across separate
gene expression simulations in the two environments and their
corresponding presence or absence of signal. In both cases, we
begin each gene expression simulation with no signal. In both
environments, the signal is turned on after a burn-in period (see
Methods), but in environment 2, the signal lasts for only 10 min,
with selection to ignore it (Fig. 3).

AND-gated C1-FFLs readily evolve as spurious signal filters.
We begin by simulating the easiest case we can devise to allow the
evolution of C1-FFLs for their purported function of filtering out
short spurious signals. The signal is allowed to act directly on the
effector, after which all that needs to evolve is a single activating
TF between the two, as well as AND-logic for the effector (Fig. 2,
leftmost). We score network motifs at the end of a set period of
evolution (see Supplementary Methods for details), further clas-
sifying evolved C1-FFLs into subtypes based on the presence of
nonoverlapping TFBSs (Fig. 2). The adaptive hypothesis predicts
the evolution of the C1-FFL subtype with AND-regulatory logic,
which requires the effector to be stimulated both by the signal and
by the slow TF. While all evolutionary replicates show large
increases in fitness, the extent of improvement varies dramati-
cally, indicating whether or not the replicate was successful at
evolving the phenotype of interest rather than becoming stuck at
an alternative locally optimal phenotype (Fig. 4a). AND-gated
C1-FFLs frequently evolve in replicates that reach high fitness,
but not in replicates that reach lower fitness (Fig. 4b).

We also see C1-FFLs that, contrary to expectations, are not
AND-gated. Non-AND-gated motifs are found more often in
low-fitness than high-fitness replicates (Fig. 4b), indicating that
the preference for AND-gates is associated with adaptation rather
than mutation bias. However, some non-AND-gated motifs are
still found even in the high-fitness replicates. This is because
motifs and their logic gates are scored on the basis of all TFBSs,
even those with two mismatches and hence low binding affinity.
Unless these weak TFBSs are deleterious, they will appear quite

often by chance alone. A random 8-bp sequence has probability
8
2

� �
´ 0:256 ´ 0:752 ¼ 0:0038 of being a two-mismatch binding

site for a given TF. In our model, a TF has the potential to
recognize 137 different sites in a 150-bp cis-regulatory sequence
(taking into account steric hindrance at the edges), each with two
orientations. Thus, by chance alone a given TF will have 0.0038 ×
137 × 2 ≈ 1 two-mismatch binding sites in a given cis-regulatory
sequence (ignoring palindromes for simplicity), compared to only
~0.1 one-mismatch TFBSs. Non-AND-gated C1-FFLs mostly
disappear when two-mismatch TFBSs are excluded, but the
AND-gated C1-FFLs found in high-fitness replicates do not
(Fig. 4c).

To confirm the functionality of these AND-gated C1-FFLs, we
mutated the evolved genotype in two different ways (Fig. 5a) to
remove the AND regulatory logic. As expected, this lowers fitness
in the presence of the short spurious signal but increases fitness in
the presence of constant signal, with a net reduction in fitness
(Fig. 5b). This is consistent with AND-gated C1-FFLs represent-
ing a tradeoff, by which a more rapid response to a true signal is
sacrificed in favor of the greater reliability of filtering out short
spurious signals.

Adaptive motifs are constrained not only in their topology and
regulatory logic, but also in the parameter space of their
component genes. In particular, there is selection for rapid
synthesis of both effector and TF proteins, as well as rapid
degradation of effector mRNA and protein (Supplementary
Table 3). Fast effector degradation reduces the transient
expression induced by the short spurious signal (Supplementary
Fig. 3). Note that we evolved solutions only at the level of
transcriptional regulation—even more rapid switching could be
achieved by posttranslational modifications, if we had allowed
them in our model.

To test the extent to which AND-gated C1-FFLs are a specific
response to selection to filter out short spurious signals, we
simulated evolution under three negative control conditions: (1)
no selection, i.e. all mutations are accepted to become the new
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Fig. 3 Selection for filtering out short spurious signals. Each selection condition averages fitness across simulations in two environments. The effectors have
different fitness effects in the two environments, and the signal also behaves differently in the two environments. Simulations begin with zero mRNA and
protein, and all genes at the Repressed state (see Methods). Each simulation is burned in for a randomly sampled length of time in the absence of signal
(shown here as 10min in environment 1, and 15 min in environment 2), and continues for another 90min after the burn-in. The signal is shown in black. Red
illustrates a good solution in which the effector responds appropriately in each of the environments, while blue shows an inferior solution. Ne_sat marks the
amount of effector protein at which the benefit from expressing the effector in environment 1 becomes saturated, as does the damage in environment 2
(see Methods). See Supplementary Fig. 3 for examples of high-fitness and low-fitness evolved phenotypes, where, as shown in this schematic, high-fitness
solutions have longer delays followed by more rapid responses thereafter
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as the average fitness over the last 10,000 steps of the evolutionary simulation. We divide genotypes into a low-fitness group (blue) and a high-fitness
group (red) using as a threshold an observed gap in the distribution. b High-fitness replicates are characterized by the presence of an AND-gated C1-FFL.
“Any logic” counts the presence of any of the seven subtypes shown in Fig. 2b. Because one TRN can contain multiple C1-FFLs of different subtypes, each of
which are scored, the sum of the occurrences of all seven subtypes will generally be more than “Any logic”. See Supplementary Methods for details on the
calculation of the y axis. c The overrepresentation of AND-gated C1-FFLs becomes even more pronounced relative to alternative logic-gating when weak
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evolutionary steps with an AND-gated C1-FFL and lacking other potentially confounding motifs (see Supplementary Fig. 4 and Supplementary Methods for
details). Destroying the AND-logic slightly increases the ability to respond to the signal, but leads to a larger loss of fitness when short spurious signals are
responded to. Fitness is shown as mean ± s.e.m. over replicate evolutionary simulations
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resident genotype; (2) no spurious signal, i.e. selection to express
the effector under a constant ON signal and not under a constant
OFF signal (Fig. 6a); (3) harmless spurious signal, i.e. selection to
express the effector under a constant ON signal whereas effector
expression in the OFF environment with short spurious signals is
neither punished nor rewarded beyond the cost of unnecessary
gene expression (Fig. 6a). AND-gated C1-FFLs evolve much less
often under all three negative control conditions (Fig. 6b, c),
showing that their prevalence is a consequence of selection for
filtering out short spurious signals, rather than a consequence of
mutational bias and/or simpler forms of selection. C1-FFLs that
do evolve under control conditions tend not to be AND-gated
(Fig. 6b), and mostly disappear when weak TFBSs are excluded
during motif scoring (Fig. 6c).

More complex networks also evolve diamond motifs. In real
biological situations, sometimes the source signal will not be able
to directly regulate an effector, and must instead operate via a
longer regulatory pathway involving intermediate TFs33. In this
case, even if the signal itself takes the idealized form shown in
Fig. 3, its shape after propagation may become distorted by the
intrinsic processes of transcription. Motifs are under selection to
handle this distortion.

To enforce indirect regulation, we ran simulations in which the
signal was only allowed to bind to the cis-regulatory sequences of
TFs and not of effector genes. The fitness distribution of the
evolutionary replicates has no obvious gaps (Supplementary
Fig. 6), so we compared the highest fitness, lowest fitness, and
median fitness replicates. In agreement with results when direct
regulation is allowed, genotypes of low and medium fitness
contain few AND-gated C1-FFLs, while high-fitness genotypes
contain many more (Fig. 7b, left and right).

While visually examining the network context of these C1-
FFLs, we discovered that many were embedded within AND-
gated “diamonds”. In a diamond, the signal activates the
expression of two genes that encode different TFs, and the two
TFs activate the expression of an effector gene (Fig. 7a middle).
When one of the two TF genes activates the other, then a C1-FFL
is also present among the same set of genes; we call this topology
a “FFL-in-diamond” (Fig. 7a, right), and the prevalence of this
configuration drew our attention toward diamonds. This led us to
discover that AND-gated diamonds also occurred frequently
without AND-gated C1-FFLs, in the configuration we call
“isolated diamonds” (Fig. 7a, middle). Note that it is in theory
possible, but in practice uncommon, for diamonds to be part of
more complex conjugates. Systematically scoring the AND-gated
isolated diamond motif confirmed its high occurrence (Fig. 7b, c,
middle). AND-gated isolated C1-FFLs appear mainly in the
highest fitness outcomes, while AND-gated isolated diamonds
appear in all fitness groups (Fig. 7c), suggesting that diamonds are
easier to evolve.

An AND-gated C1-FFL integrates information from a short/
fast regulatory pathway with information from a long/slow
pathway, in order to filter out short spurious signals. A diamond
achieves the same end of integrating fast and slowly transmitted
information via differences in the gene expression dynamics of
the two regulatory pathways, rather than via topological length
(Fig. 8). The fast and slow pathways could be distinguished in a
number of ways, e.g. by the slope at which the transcription factor
concentration increases or the time at which it exceeds a
threshold or plateaus. We found it convenient to identify the
“fast TF” as the one with the higher protein degradation rate.
Specifically, we use the geometric mean of the protein degrada-
tion rate over gene copies of a TF in order to differentiate the two
TFs.
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Fig. 6 Selection for filtering out short spurious signals is the primary cause of C1-FFLs. TRNs are evolved under different selection conditions, and we score
the probability that at least one C1-FFL is present (see Supplementary Methods). Schematics of selection, in which fitness is averaged with weights 2:1 over
environment 1:2, are shown in (a). The effector is deleterious in environment 1 except in the “harmless” and “no selection” conditions. Weak (two-
mismatch) TFBSs are included in (b) and are excluded in (c) during motif scoring. Data are shown as mean ± s.e.m. over evolutionary replicates. C1-FFL
occurrence is similar for high-fitness and low-fitness outcomes in control selective conditions (Supplementary Fig. 5), and so all evolutionary outcomes
were combined. “Spurious signal filter required (high fitness)” uses the same data as in Fig. 4
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The parameter values of the fast TF are more evolutionarily
constrained than those of the slow TF (Supplementary Table 4).
In particular, there is selection for rapid degradation of the fast
TF protein and mRNA (Supplementary Table 4). Isolated AND-
gated C1-FFLs also show pronounced selection for the TF in the
fast pathway to have rapid protein degradation (Supplementary
Table 5). Fast-degrading mRNA and proteins are rare (Supple-
mentary Table 1), suggesting that mutational biases might make
them difficult to evolve. But even when they do evolve, fast
degradation keeps the fast TF at low concentrations. To
compensate, the fast TF must overcome mutational bias to also
evolve high binding affinity and rapid protein synthesis
(Supplementary Tables 4 and 5).

Perturbation analysis supports an adaptive function for AND-
gated C1-FFLs and diamonds evolved under indirect regulation
(Fig. 9a, b). Breaking the AND-gate logic of these motifs by adding
a TFBS to the effector cis-regulatory region reduces the fitness
under the spurious signal but increases it under the constant ON
signal, resulting in a net decrease in the overall fitness. Note that a
simple transcriptional cascade, signal → TF → effector, has also

been found experimentally to filter out short spurious signals34; in
Supplementary Note 1, we argue that diamonds are not by-products
of selection for cascades, but are the direct target of selection.

Weak TFBSs change how motifs are scored. Results depend on
whether we include weak TFBSs when scoring motifs. Weak
TFBSs can either be in the effector’s cis-regulatory region,
affecting how the regulatory logic is scored, or in TFs upstream in
the TRN, affecting only the presence or absence of motifs.

When we exclude upstream weak TFBSs while scoring motifs,
FFL-in-diamonds are no longer found, while the occurrence of
isolated C1-FFLs and diamonds increases (Fig. 7c). This makes
sense, because adding one weak TFBS, which can easily happen
by chance alone, can convert an isolated diamond or C1-FFL into
a FFL-in-diamond (added between intermediate TFs, or from
signal to slow TF, respectively).

When a motif is scored as AND-gated only when two-
mismatch TFBSs in the effector are excluded, we call it a “near-
AND-gated” motif. TFs may bind so rarely to a weak affinity

0.6

a

b

c

Near AND-gated
AND-gated

Near AND-gated Low-fitness n = 30
Medium-fitness n = 30
High-fitness n = 30

Low-fitness n = 30
Medium-fitness n = 30
High-fitness n = 30

AND-gated

Sufficient for activation:

With upstream weak TFBSs

Without upstream weak TFBSs

Insufficient for activation:

E

S

E

S

E

S

0.4

0.2

P
ro

ba
bi

lit
y 

of
 p

re
se

nc
e

P
ro

ba
bi

lit
y 

of
 p

re
se

nc
e

0

L M

Isolated C1-FFL

H L M H L M H

L M H L M H L M H

0.6

0.4

0.2

0

Isolated diamond FFL-in-diamond

Isolated C1-FFL Isolated diamond FFL-in-diamond

Isolated C1-FFL Isolated diamond FFL-in-diamond
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TFBS that the presence of the weak TFBS changes little, making
the regulatory logic still effectively AND-gated. A near-AND-
gated motif may therefore evolve for the same adaptive reasons as
an AND-gated one. Figure 7b, c shows that both AND-gated and
near-AND-gated motifs are enriched in the higher fitness
genotypes. There is more likely to be a weak affinity TFBS for
the fast TF than the slow TF, and adding one does less harm (see
Supplementary Note 2 and Supplementary Fig. 7).

Diamonds also evolve without external spurious signals. We
simulated evolution under the same three control conditions as
before, this time without allowing the signal to directly regulate
the effector. When weak (two-mismatch) TFBSs are excluded,
AND-gated isolated C1-FFLs are seen only after selection for
filtering out a spurious signal, and not under other selection
conditions (Fig. 10a). However, AND-gated isolated diamonds
also evolve in the absence of spurious signals, indeed at even
higher frequency (Fig. 10b). Results including weak TFBSs are
similar (Supplementary Fig. 10).

Perturbing the AND-gate logic in isolated diamonds evolved in
the absence of spurious external signals reduces fitness via effects
in the environment where expressing the effector is deleterious
(Fig. 9c). The stochastic expression of intermediate TFs might
effectively create short intrinsic spurious signals when the
external signal is set to OFF. It seems that AND-gated diamonds
evolve to mitigate this risk, but that AND-gated C1-FFLs do not.
This may be because C1-FFLs delay the expression of effectors
more than diamonds do, because the fast TF must first be
translated in order to turn on the slow TF. Delays are costly when
expression is beneficial, and unnecessary to filter out a very short
signal; because internally generated spurious signals have an
exponential distribution, most are short35. Alternatively, the
advantage of diamonds might be that spurious effector expression
requires both TFs to be accidentally and independently expressed,

whereas spurious TF expression in AND-gated C1-FFLs is not
independent because the fast TF can induce the slow TF36.

Discussion
There has never been sufficient evidence to satisfy evolutionary
biologists that motifs in TRNs represent adaptations for parti-
cular functions. Critiques by evolutionary biologists to this
effect13–23 have been neglected, rather than answered, until now.
While C1-FFLs can be conserved across different species37–40,
this does not imply that specific “just-so” stories about their
function are correct. In this work, we study the evolution of
AND-gated C1-FFLs, which are hypothesized to be adaptations
for filtering out short spurious signals3. Using a novel and more
mechanistic computational model to simulate TRN evolution, we
found that AND-gated C1-FFLs evolve readily under selection for
filtering out a short spurious signal, and not under control con-
ditions. Our results support the adaptive hypothesis about C1-
FFLs.

It is difficult to distinguish adaptations from “spandrels”8.
Standard procedure is to look for motifs that are more frequent
than expected from some randomized version of a TRN2,41. For
this method to work, this randomization must control for all
confounding factors that are nonadaptive with respect to the
function in question, from patterns of mutation to a general
tendency to hierarchy—a near-impossible task. Our approach to a
null model is not to randomize, but to evolve with and without
selection for the specific function of interest. This meets the
standards of evolutionary biology for inferring the adaptive nat-
ure of a motif13–23.

AND-gated C1-FFLs express an effector after a noise-filtering
delay when the signal is turned on, but shut down expression
immediately when the signal is turned off, giving rise to a “sign-
sensitive delay”3,7. Rapidly switching off has been hypothesized to
be part of their selective advantage, above and beyond the
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Fig. 8 The two TFs in an AND-gated diamond propagate the signal at different speeds. Expression of the two TFs in one representative genotype from the
one high-fitness evolutionary replicate in Fig. 7b that evolved an AND-gated isolated diamond is shown. Both the slow TF and the fast TF are encoded by
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function of filtering out short spurious signals35. We intended to
select only for filtering out a short spurious signal, and not for fast
turn-off; specifically, we expected effector expression to evolve a
delay equal to the duration of the spurious signal. However,
evolved solutions still expressed the effector in the presence of
short spurious signals (Supplementary Fig. 3), and thus benefitted
from rapidly turning off this spurious expression. In other words,
we effectively selected for both delayed turn-on and rapid turn-
off, despite our intent to only select for the former.

Previous studies have also attempted to evolve adaptive motifs
in a computational TRN, successfully under selection for circa-
dian rhythm and for multiple steady states42, and unsuccessfully
under selection to produce a sine wave in response to a periodic
pulse23. Other studies have evolved adaptive motifs in a mixed
network of transcriptional regulation and protein–protein inter-
action43–45. Our successful simulation might offer some metho-
dological lessons, especially a focus on high-fitness evolutionary
replicates, which was done by us and by Burda et al.42 but not by
Knabe et al.23.

Knabe et al.23 suggested that including a cost for gene
expression may suppress unnecessary links and thus make it
easier to score motifs. However, when we removed the cost of
gene expression term (C(t)= 0, see Methods), AND-gated C1-
FFLs still evolved in the high-fitness genotypes under selection for
filtering out a spurious signal (Supplementary Fig. 11). In our
model, removing the cost of gene expression did not, via per-
mitting unnecessary links, conceal motifs.

While simplified relative to reality, our model is undeniably
complicated. An important question is which complications are
important for what. One complication is our nucleotide-
sequence-level model of cis-regulatory sequences. This has the
advantage of capturing weak TFBSs, realistic turnover, and other
mutational biases. The disadvantage is that calculating the
probabilities of TF binding is computationally expensive and
scales badly with network size. Future work might design a more
schematic model of cis-regulatory sequences to improve compu-
tation while still capturing realistic mutation biases. A second
complication of our approach is the stochastic simulation of gene
expression. This is essential for our question, because intrinsic
noise in gene expression can mimic the effects of a spurious
signal, but may be less important in other scenarios in which the
focus is on steady state behavior.

Our model, while complex for a model and hence capable of
capturing intrinsic noise, is inevitably less complex than the
biological reality. However, we hope to have captured key phe-
nomena, albeit in simplified form. One key phenomenon is that
TFBSs are not simply present vs. absent but can be strong or
weak, i.e. the TRN is not just a directed graph, but its connections
vary in strength. Our model, like that of Burda et al.42 in the
context of circadian rhythms, captures this fact by basing TF
binding affinity on the number of mismatch deviations from a
consensus TFBS sequence. While in reality, the strength of TF
binding is determined by additional factors, such as broader
nucleic context and cooperative behavior between TFs (reviewed
in Inukai et al.46), these complications are unlikely to change the
basic dynamics of frequent appearance of weak TFBSs and greater
mutational accessibility of strong TFBSs from weak TFBSs than
de novo. Similarly, AND-gating can be quantitative rather than
qualitative47, a phenomenon that weak TFBSs in our model
provide a simplified version of.

Core links in adaptive motifs almost always involve strong not
weak TFBSs. However, weak (two-mismatch) TFBSs can create
additional links that prevent an adaptive motif from being scored
as such. Some potential additional links are neutral while others
are deleterious; the observed links are thus shaped by this selec-
tive filter, without being adaptive. Note that there have been

experimental reports that even weak TFBSs can be functionally
important48,49; these might, however, better correspond to 1-
mismatch TFBSs in our model than two-mismatch TFBSs. Ramos
and Barolo49 and Crocker et al.48 identified their “weak” TFBSs in
comparison to the strongest possible TFBS, not in comparison to
the weakest still showing affinity above baseline.

A striking and unexpected finding of our study was that AND-
gated diamonds evolved as an alternative motif for filtering out
short spurious external signals, and that these, unlike FFLs, were
also effective at filtering out intrinsic noise. Multiple motifs have
previously been found capable of generating the same steady state
expression pattern21; here we find multiple motifs for a much
more complex function.

Diamonds are not overrepresented in the TRNs of bacteria2 or
yeast50, but are overrepresented in signaling networks (in which
posttranslational modification plays a larger role)51, and in neu-
ronal networks1. In our model, we treated the external signal as
though it were a transcription factor, simply as a matter of
modeling convenience. In reality, signals external to a TRN are by
definition not TFs (although they might be modifiers of TFs).
This means that our indirect regulation case, in which the signal
is not allowed to directly turn on the effector, is the most
appropriate one to analyze if our interest is in TRN motifs that
mediate contact between the two. Note that if under indirect
regulation we were to score the signal as not itself a TF, we would
observe adaptive C1-FFLs but not diamonds, in agreement with
the TRN data. However, these TRN data might miss functional
diamond motifs that spanned levels of regulatory organization,
i.e. that included both transcriptional and other forms of reg-
ulation. The greatest chance of finding diamonds within TRNs
alone come from complex and multilayered developmental cas-
cades, rather than bacterial or yeast52. Multiple interwoven dia-
monds are hypothesized to be embedded with multilayer
perceptrons that are adaptations for complex computation in
signaling networks53.

Previous work has also identified alternatives to AND-gated
C1-FFLs. Specifically, in mixed networks of transcriptional reg-
ulation and protein−protein interactions, FFLs did not evolve
under selection for delayed turn-on (as well as rapid turn-off)45.
Indeed, even when an FFL topology was enforced, with only the
parameters allowed to evolve, two alternative motifs remained
superior45. However, one alternative motif, which the authors
called “positive feedback” is essentially still an AND-gated C1-
FFL, specifically one in which the intermediate TF expression is
also AND-gated, requiring both itself and the signal for upregu-
lation. The other is a cascade in which the signal inhibits the
expression of an intermediate TF protein that represses the
expression of the effector. The cost of constitutive expression of
the intermediate TF in the absence of the signal was not mod-
eled45, giving this cascade an unrealistic advantage.

Most previous research on C1-FFLs has used an idealized
implementation (e.g. a square wave) of what a short spurious
signal entails4,35,54. In real networks, noise arises intrinsically in a
greater diversity of forms, which our model does more to capture.
Even when a “clean” form of noise enters a TRN, it subsequently
gets distorted with the addition of intrinsic noise55. Intrinsic noise
is ubiquitous and dealing with it is an omnipresent challenge for
selection. Indeed, we see adaptive diamonds evolve to suppress
intrinsic noise, even when we select in the absence of extrinsic
spurious signals.

The function of a motif relies ultimately on its dynamic
behavior, with topology merely a means to that end. To create
two pathways that regulate the effector at different speeds, the
C1-FFL motif uses a pair of short and long pathways, but these
also correspond to fast-degrading and slow-degrading TFs. This
same function was achieved entirely nontopologically in our
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adaptively evolved diamond motifs. This agrees with other studies
showing that topology alone is not enough to infer activities such
as spurious signal filtering from network motifs30–32.

Methods
Transcription factor binding. Transcription of each gene is controlled by TFBSs
present within a 150-bp cis-regulatory region. When bound, a TF occupies a stretch
of DNA 14 bp long (Supplementary Fig. 2). In the center of this stretch, each TF
recognizes an 8-bp consensus sequence (Supplementary Fig. 2), and binds to it with
a TF-specific (and mutable) dissociation constant Kd(0). TFs also bind somewhat
specifically when there are one or two mismatches, with Kd(1) and Kd(2) values
calculated from Kd(0) according to a model of approximately additive binding
energy per base pair. With three mismatches, binding occurs at the same back-
ground affinity as to any 14 bp stretch of DNA. We model competition between a
smaller number of specific higher-affinity binding sites and the much larger
number of nonspecific binding sites, the latter corresponding to the total amount of
nucleosome-free sequence in S. cerevisiae. Competition with nonspecific binding
can be approximated by using an effective dissociation constant K̂d ¼ 10Kd. See
Supplementary Methods for justification and details of these model choices.

Each TF is either an activator or a repressor. The algorithm for obtaining the
probability distribution for A activators and R repressors being bound to a given
cis-regulatory region at a given moment in gene expression time is described in the
Supplementary Methods.

The signal is treated as though it were an activating TF whose concentration is
controlled externally, with an OFF concentration of zero and an ON concentration
of 1000 molecules per cell, which is the typical per-cell number of a yeast TF56.

Transcriptional regulation. PA denotes the probability of having at least one
activator bound for an AND-gate-incapable gene, or two for an AND-gate-capable
gene. PR denotes the probability of having at least one repressor bound.

Noise in yeast gene expression is well described by a two-step process of
transcriptional activation57,58, e.g. nucleosome disassembly followed by
transcription machinery assembly. We denote the three corresponding possible
states of the transcription start site as Repressed, Intermediate, and Active (Fig. 1a).
Transitions between the states depend on the numbers of activator and repressor
TFs bound (e.g. via recruitment of histone-modifying enzymes59,60). We make
conversion from Repressed to Intermediate a linear function of PA, ranging from
the background rate 0.15 min−1 of histone acetylation61 (presumed to be followed
by nucleosome disassembly), to the rate of nucleosome disassembly 0.92 min−1 for
the constitutively active PHO5 promoter57:

rRep to Int ¼ 0:92PA þ 0:15 1� PAð Þ: ð1Þ
We make conversion from Intermediate to Repressed a linear function of PR,
ranging from a background histone de-acetylation rate of 0.67 per min61, up to a
maximum of 4.11 min−1 (the latter chosen so as to keep a similar maximum:basal
rate ratio as that of rRep_to_Int):

rInt to Rep ¼ 4:11PR þ 0:67 1� PRð Þ ð2Þ
We assume that repressors disrupt the assembly of transcription machinery62 to

such a degree that conversion from Intermediate to Active does not occur if even a
single repressor is bound. In the absence of repressors, activators facilitate the
assembly of transcription machinery63. Brown et al.57 reported that the rate of
transcription machinery assembly is 3.3 min−1 for a constitutively active PHO5
promoter, and 0.025 min−1 when the PHO4 activator of the PHO5 promoter is
knocked out. We use this range to set

rInt to Act ¼ 3:3PA no R þ 0:025PnotA no R ; ð3Þ
where PA_no_R is the probability of having no repressors and either one (for an
AND-gate-incapable gene) or two (for an AND-gate-capable gene) activators
bound, and PnotA_no_R is the probability of having no TFs bound (for AND-gate-
incapable genes) or having no repressors and not more than one activator bound
(for AND-gate-capable genes).

The promoter sequence not only determines which specific TFBSs are present,
but also influences nonspecific components of the transcriptional machinery64,65.
We capture this via gene-specific but TF-binding-independent rates rAct_to_Int with
which the machinery disassembles and a burst of transcription ends. In other
words, we let TF binding regulate the frequency of bursts of transcription, while
other properties of the cis-regulatory region regulate their duration. For example,
the yeast transcription factor PHO4 regulates the frequency but not duration of
bursts of PHO5 expression, by regulating the rates of nucleosome removal and of
transition to but not from a transcriptionally active state57. Parameterization of
rAct_to_Int is described in the Supplementary Methods.

mRNA and protein dynamics. All genes in the Active state initiate new transcripts
stochastically at rate rmax_transc_init= 6.75 mRNA per min57, while the time for
completing transcription depends on gene length (see Supplementary Methods for
parameterization of gene length and associated delay times). We model a second
delay before a newly completed transcript produces the first protein, which we

assume is dominated by translation initiation (length-independent) plus elongation
(length-dependent) and not splicing or mRNA export (see Supplementary Meth-
ods). After the second delay, we model protein production as continuous at a gene-
specific rate rprotein_syn (see Supplementary Methods).

Protein transport into the nucleus is rapid66 and is approximated as
instantaneous and complete, so that the newly produced protein molecules
immediately increase the probability of TF binding. Each gene has its own mRNA
and protein decay rates, initialized from distributions taken from data (see
Supplementary Methods).

All the rates regarding transcription and translation are listed in Supplementary
Table 1, including distributions estimated from data, and hard bounds imposed to
prevent unrealistic values arising during evolutionary simulations.

Gene expression simulation. Our algorithm is part stochastic, part deterministic.
We use a Gillespie algorithm to simulate stochastic transitions between Repressed,
Intermediate, and Active chromatin states, and to simulate transcription initiation
and mRNA decay events. Fixed (i.e. deterministic) delay times are simulated
between transcription initiation and completion, and between transcript comple-
tion and the production of the first protein. Protein production and degradation
are described deterministically with ODEs. We update protein production rates
frequently in order to recalculate TF concentrations and hence chromatin transi-
tion rates, limiting the magnitude of errors in the simulation (Supplementary
Fig. 12). Details of our simulation algorithm are given in the Supplementary
Methods. We initialize gene expression simulations with no mRNA or protein, and
all genes in the Repressed state.

Fitness. We make fitness quantitative in terms of a “benefit” B(t) as a function of
the amount of effector protein Ne(t) at gene expression time t. Our motivation is a
scenario in which the effector protein is responsible for directing resources from a
metabolic program favored in environment 2 to a metabolic program favored in
environment 1. In environment 1, where the effector produces benefits,

B tð Þ ¼ bmax
Ne tð Þ
Ne sat

; Ne tð Þ<Ne sat

bmax; Ne tð Þ � Ne sat

(
; ð4Þ

where bmax is the maximum benefit if all resources were redirected, and Ne_sat is the
minimum amount of effector protein needed to achieve this. Similarly, in envir-
onment 2

B tð Þ ¼ bmax � bmax
Ne tð Þ
Ne sat

; Ne tð Þ<Ne sat

0; Ne tð Þ � Ne sat

:

(
ð5Þ

We set Ne_sat to 10,000 molecules, which is about the average number of molecules
of a metabolism-associated protein per cell in yeast56. Without loss of generality
given that fitness is relative, we set bmax to 1.

A second contribution to fitness comes from the cost of gene expression C(t)
(Fig. 1b, middle). We make this cost proportional to the total protein production
rate. We estimate a fitness cost of gene expression of 2 × 10−6 per protein molecule
translated per minute, based on the cost of expressing a nontoxic protein in yeast67

(see Supplementary Methods for details).
To ensure that gene expression changes in response to the signal, and not via an

internal timer, we simulate a burn-in phase with duration drawn from an
exponential distribution truncated at 30 min, with untruncated mean of 10 min. By
having no fitness effects of gene expression during the burn-in, we eliminate a
significant source of noise in fitness estimation due to variable burn-in duration. In
our control condition, at the end of the burn-in, the signal suddenly switches to a
constant ON level in environment 1, and remains off in environment 2.

We simulate gene expression for 90 min plus the duration of the burn-in
(Fig. 3). A “cellular fitness” in a given environment is calculated as the average
instantaneous fitness B(t)− C(t) over the 90 min. We consider environment 2 to be
twice as common as environment 1 (a signal should be for an uncommon event
rather than the default), and take the corresponding weighted average.

Evolutionary simulation. We simulate a novel version of origin-fixation (weak-
mutation-strong-selection) evolutionary dynamics, i.e. the population contains
only one resident genotype at any time, and mutant genotypes are either rejected or
chosen to be the next resident (Fig. 1c). Despite the fact that our mutant acceptance
rule (see below) was chosen to maximize computational efficiency, our model
usually takes 10 CPUs 1–3 days to complete an evolutionary simulation. We note
that genetic homogeneity entails ignoring some important population genetic
phenomena. First, if there were recombination, heterogeneity would favor muta-
tions that combine well with a range of other genotypes. Second, clonal interference
would shift evolution toward beneficial mutations of larger effect68 (an effect we
can mimic by modifying the value 10−8 in Eq. 6). Third, polymorphic populations
would evolve mutational robustness69. None of these three effects seems a priori
likely to change our conclusions, although the possibility cannot be ruled out.

Estimators F̂ of genotype fitness are averages of the cellular fitness values of 200
replicate simulations of gene expression per environment in the case of the mutant,
plus an additional 800 should it be chosen to be the next resident. The mutant
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replaces the resident if

F̂mutant � F̂resident
jF̂residentj

� 10�8: ð6Þ

This differs from Kimura’s70 equation for fixation probability, but captures the
flavor of genetic drift. Genetic drift allows slightly deleterious mutations to
occasionally fix, and beneficial mutations to sometimes fail to do so, even as the
probability of fixation is monotonic with fitness. This is also achieved by our
procedure, because of stochastic deviations of F̂ from true genotype fitness. The
number of gene expression simulation replicates captures the flavor of effective
population size.

Note that it is possible, especially at the beginning of an evolutionary
simulation, for relative fitness to be paradoxically negative. This occurs when a
randomly initialized genotype does not express the effector (garnering no fitness
benefit), but does express other genes (accruing a cost of expression); this
combination makes fitness negative. In this rare case, for simplicity, we use the
absolute value of F̂ on the denominator.

Evolutionary simulations would require much more computation if we used a
classic Wright–Fisher or Moran individual-based model, e.g. of population size
1000. Our scheme ensures that all mutations are evaluated by at least 200 gene
expression simulations, making the probability of fixation of a beneficial mutation
much higher than the O(s) in an individual-based model. An individual-based
model would also require more than the 1000 gene expression simulations required
by our scheme per successful selective sweep.

If 2000 successive mutants are all rejected, the simulation is terminated; upon
inspection, we found that these resident genotypes had evolved to not express the
effector in either environment. We refer to each change in resident genotype as an
evolutionary step. We stop the simulation after 50,000 evolutionary steps; at this
time, most replicate simulations seem to have reached a fitness plateau
(Supplementary Fig. 13); we analyze all replicates except those terminated early. To
reduce the frequency of early termination in the case where the signal was not
allowed to directly regulate the effector, we used a burn-in phase selecting on a
more accessible intermediate phenotype (see Supplementary Methods). In this case,
burn-in occurred for 1000 evolutionary steps, followed by the usual 50,000
evolutionary steps with selection for the phenotype of interest (Supplementary
Fig. 13, right panels). Most replicates found a stable fitness plateau within 10,000
evolutionary steps, although some replicates were temporarily trapped at a low-
fitness plateau (Supplementary Fig. 13).

Genotype initialization. We initialize genotypes with three activator genes, three
repressor genes, and one effector gene. Cis-regulatory sequences and consensus
binding sequences contain As, Cs, Gs, and Ts sampled with equal probability. Rate
constants associated with the expression of each gene are sampled from the dis-
tributions summarized in Supplementary Table 1.

Mutation. A genotype is subjected to five broad classes of mutation, at rates
summarized in Supplementary Table 2 and justified in the Supplementary Meth-
ods. First are single nucleotide substitutions in the cis-regulatory sequence; the
resident nucleotide mutates into one of the other three types of nucleotides with
equal probability. Second are single nucleotide changes to the consensus binding
sequence of a TF (including the signal), with the resident nucleotide mutated into
recognizing one of the other three types with equal probability. Both of these types
of mutation can affect the number and strength of TFBSs.

Third are gene duplications or deletions. Because computational cost scales
steeply (and nonlinearly) with network size, we do not allow effector genes to
duplicate once there are five copies, nor TF genes to duplicate once the total
number of TF gene copies is 19. We also do not allow the signal, the last effector
gene, nor the last TF gene to be deleted.

Fourth are mutations to gene-specific expression parameters. Most of these
(L, rAct_to_Int, rprotein_syn, rmRNA_deg, and rprotein_deg) apply to both TFs and effector
genes, while mutations to the gene-specific values of Kd(0) apply only to TFs and
the signal. Each mutation to L increases or decreases it by 1 codon, with equal
probability unless L is at the upper or lower bound. Effect sizes of mutations to the
other five parameters are modeled in such a way that mutation would maintain
specified log-normal stationary distributions for these values, in the absence of
selection or arbitrary bounds (see Supplementary Methods for details). Upper and
lower bounds (Supplementary Methods) are used to ensure that selection never
drives these parameters to unrealistic values.

Fifth is conversion of a TF from being an activator to being a repressor, and vice
versa. The signal is always an activator, and never converts.

Importantly, this scheme allows for divergence following gene duplication.
When duplicates differ due only to mutations of class 4, i.e. protein function is
unchanged, we refer to them as “copies” of the same gene, encoding “protein
variants”. Mutations in classes 2 and 5 can create a new protein. When scoring
network motifs, we require two nodes to be different genes, rather than copies of
the same gene (see Supplementary Methods for details).

Supplementary Table 6 summarizes the tendencies of different mutation types
to be accepted, and to contribute to evolution. Acceptance rates are high, indicative
of substantial nearly neutral evolution, in which slightly deleterious mutations are
fixed and subsequently compensated for.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data that can be used to recreate the presented figures are available at https://github.com/
MaselLab/network-evolution-simulator.

Code availability
Source code in C is freely available at https://github.com/MaselLab/network-evolution-
simulator.

Received: 27 September 2018 Accepted: 9 May 2019

References
1. Milo, R. et al. Network motifs: simple building blocks of complex networks.

Science 298, 824–827 (2002).
2. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the

transcriptional regulation network of Escherichia coli. Nat. Genet. 31, 64–68
(2002).

3. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev.
Genet. 8, 450–461 (2007).

4. Mangan, S. & Alon, U. Structure and function of the feed-forward loop
network motif. Proc. Natl. Acad. Sci. USA 100, 11980–11985 (2003).

5. Jaeger, K. E., Pullen, N., Lamzin, S., Morris, R. J. & Wigge, P. A. Interlocking
feedback loops govern the dynamic behavior of the floral transition in
Arabidopsis. Plant Cell 25, 820–833 (2013).

6. Peter, I. S. & Davidson, E. H. Assessing regulatory information in
developmental gene regulatory networks. Proc. Natl. Acad. Sci. USA 114,
5862–5869 (2017).

7. Mangan, S., Zaslaver, A. & Alon, U. The coherent feedforward loop serves as a
sign-sensitive delay element in transcription networks. J. Mol. Biol. 334,
197–204 (2003).

8. Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the
Panglossian Paradigm: a critique of the adaptationist programme. Proc. R. Soc.
Lond., B, Biol. Sci. 205, 581–598 (1979).

9. Graur, D. et al. On the immortality of television sets: “function” in the human
genome according to the evolution-free gospel of ENCODE. Genome Biol.
Evol. 5, 578–590 (2013).

10. Masel, J. & Promislow, D. E. L. Answering evolutionary questions: a guide for
mechanistic biologists. BioEssays 38, 704–711 (2016).

11. Widder, S., Solé, R. & Macía, J. Evolvability of feed-forward loop architecture
biases its abundance in transcription networks. BMC Syst. Biol. 6, 7 (2012).

12. Cordero, O. X. & Hogeweg, P. Feed-forward loop circuits as a side effect of
genome evolution. Mol. Biol. Evol. 23, 1931–1936 (2006).

13. Artzy-Randrup, Y., Fleishman, S. J., Ben-Tal, N. & Stone, L. Comment on
“network motifs: simple building blocks of complex networks” and
“superfamilies of evolved and designed networks”. Science 305, 1107 (2004).

14. Jenkins, D. & Stekel, D. De novo evolution of complex, global and hierarchical
gene regulatory mechanisms. J. Mol. Evol. 71, 128–140 (2010).

15. Lynch, M. The evolution of genetic networks by non-adaptive processes. Nat.
Rev. Genet. 8, 803–813 (2007).

16. Mazurie, A., Bottani, S. & Vergassola, M. An evolutionary and functional
assessment of regulatory network motifs. Genome Biol. 6, R35 (2005).

17. Solé, R. V. & Valverde, S. Are network motifs the spandrels of cellular
complexity? Trends Ecol. Evol. 21, 419–422 (2006).

18. Tsuda, M. E. & Kawata, M. Evolution of gene regulatory networks by
fluctuating selection and intrinsic constraints. PLoS Comput. Biol. 6, e1000873
(2010).

19. Wagner, A. Does selection mold molecular networks? Sci. STKE 2003, pe41
(2003).

20. Kuo, P. D., Banzhaf, W. & Leier, A. Network topology and the evolution of
dynamics in an artificial genetic regulatory network model created by whole
genome duplication and divergence. BioSystems 85, 177–200 (2006).

21. Payne, J. L. & Wagner, A. Function does not follow form in gene regulatory
circuits. Sci. Rep. 5, 13015 (2015).

22. Ruths, T. & Nakhleh, L. Neutral forces acting on intragenomic variability
shape the Escherichia coli regulatory network topology. Proc. Natl. Acad. Sci.
USA 110, 7754–7759 (2013).

23. Knabe, J. F., Nehaniv, C. L. & Schilstra, M. J. Do motifs reflect evolved
function?—no convergent evolution of genetic regulatory network subgraph
topologies. Biosystems 94, 68–74 (2008).

24. Raser, J. M. & O’Shea, E. K. Noise in gene expression: origins, consequences,
and control. Science 309, 2010–2013 (2005).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10388-6

12 NATURE COMMUNICATIONS |         (2019) 10:2418 | https://doi.org/10.1038/s41467-019-10388-6 | www.nature.com/naturecommunications

https://github.com/MaselLab/network-evolution-simulator
https://github.com/MaselLab/network-evolution-simulator
https://github.com/MaselLab/network-evolution-simulator
https://github.com/MaselLab/network-evolution-simulator
www.nature.com/naturecommunications


25. Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene
expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

26. Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature
467, 167–173 (2010).

27. Draghi, J. & Whitlock, M. Robustness to noise in gene expression evolves
despite epistatic constraints in a model of gene networks. Evolution 69,
2345–2358 (2015).

28. Jenkins, D. J. & Stekel, D. J. A new model for investigating the evolution of
transcription control networks. Artif. Life 15, 259–291 (2009).

29. Henry, A., Hemery, M. & François, P. φ-evo: a program to evolve phenotypic
models of biological networks. PLoS Comput. Biol. 14, e1006244 (2018).

30. Ingram, P. J., Stumpf, M. P. & Stark, J. Network motifs: structure does not
determine function. BMC Genom. 7, 108–108 (2006).

31. Wall, M. E., Dunlop, M. J. & Hlavacek, W. S. Multiple functions of a feed-
forward-loop gene circuit. J. Mol. Biol. 349, 501–514 (2005).

32. Wall, M. E. Structure–function relations are subtle in genetic regulatory
networks. Math. Biosci. 231, 61–68 (2011).

33. Balázsi, G., Barabási, A. L. & Oltvai, Z. N. Topological units of environmental
signal processing in the transcriptional regulatory network of Escherichia coli.
Proc. Natl. Acad. Sci. USA 102, 7841–7846 (2005).

34. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation
in a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. USA 102,
3581–3586 (2005).

35. Dekel, E., Mangan, S. & Alon, U. Environmental selection of the feed-forward
loop circuit in gene-regulation networks. Phys. Biol. 2, 81 (2005).

36. Kittisopikul, M. & Süel, G. M. Biological role of noise encoded in a genetic
network motif. Proc. Natl. Acad. Sci. USA 107, 13300–13305 (2010).

37. Boyle, A. P. et al. Comparative analysis of regulatory information and circuits
across distant species. Nature 512, 453–456 (2014).

38. Kemmeren, P. et al. Large-scale genetic perturbations reveal regulatory
networks and an abundance of gene-specific repressors. Cell 157, 740–752
(2014).

39. Stergachis, A. B. et al. Conservation of trans-acting circuitry during
mammalian regulatory evolution. Nature 515, 365–370 (2014).

40. Madan Babu, M., Teichmann, S. A. & Aravind, L. Evolutionary dynamics of
prokaryotic transcriptional regulatory networks. J. Mol. Biol. 358, 614–633
(2006).

41. Kashtan, N., Itzkovitz, S., Milo, R. & Alon, U. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs.
Bioinformatics 20, 1746–1758 (2004).

42. Burda, Z., Krzywicki, A., Martin, O. C. & Zagorski, M. Motifs emerge from
function in model gene regulatory networks. Proc. Natl. Acad. Sci. USA 108,
17263–17268 (2011).

43. François, P. & Hakim, V. Design of genetic networks with specified functions
by evolution in silico. Proc. Natl. Acad. Sci. USA 101, 580–585 (2004).

44. François, P. & Siggia, E. D. Predicting embryonic patterning using mutual
entropy fitness and in silico evolution. Development 137, 2385–2395 (2010).

45. Warmflash, A., François, P. & Siggia, E. D. Pareto evolution of gene networks:
an algorithm to optimize multiple fitness objectives. Phys. Biol. 9,
56001–56007 (2012).

46. Inukai, S., Kock, K. H. & Bulyk, M. L. Transcription factor–DNA binding:
beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110–119 (2017).

47. Wang, D. et al. Loregic: a method to characterize the cooperative logic of
regulatory factors. PLoS Comput. Biol. 11, e1004132 (2015).

48. Crocker, J. et al. Low affinity binding site clusters confer Hox specificity and
regulatory robustness. Cell 160, 191–203 (2015).

49. Ramos, A. I. & Barolo, S. Low-affinity transcription factor binding sites shape
morphogen responses and enhancer evolution. Philos Trans. R. Soc. Lond., B,
Biol. Sci. 368, 20130018 (2013).

50. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces
cerevisiae. Science 298, 799–804 (2002).

51. Ma’ayan, A. et al. Formation of regulatory patterns during signal propagation
in a mammalian cellular network. Science 309, 1078–1083 (2005).

52. Rosenfeld, N. & Alon, U. Response delays and the structure of transcription
networks. J. Mol. Biol. 329, 645–654 (2003).

53. Alon, U. An Introduction to Systems Biology: Design Principles of Biological
Circuits (Chapman and Hall/CRC, Boca Raton, FL, 2007).

54. Hayot, F. & Jayaprakash, C. A feedforward loop motif in transcriptional
regulation: induction and repression. J. Theor. Biol. 234, 133–143 (2005).

55. Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks.
Science 307, 1965–1969 (2005).

56. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature
425, 737–741 (2003).

57. Brown, C. R., Mao, C., Falkovskaia, E., Jurica, M. S. & Boeger, H. Linking
stochastic fluctuations in chromatin structure and gene expression. PLoS Biol.
11, e1001621 (2013).

58. Mao, C. et al. Quantitative analysis of the transcription control mechanism.
Mol. Syst. Biol. 6, 431 (2010).

59. Shahbazian, M. D. & Grunstein, M. Functions of site-specific histone
acetylation and deacetylation. Annu. Rev. Biochem. 76, 75–100 (2007).

60. Voss, T. C. & Hager, G. L. Dynamic regulation of transcriptional states by
chromatin and transcription factors. Nat. Rev. Genet. 15, 69–81 (2013).

61. Katan-Khaykovich, Y. & Struhl, K. Dynamics of global histone acetylation and
deacetylation in vivo: rapid restoration of normal histone acetylation status
upon removal of activators and repressors. Genes Dev. 16, 743–752 (2002).

62. Courey, A. J. & Jia, S. Transcriptional repression: the long and the short of it.
Genes Dev. 15, 2786–2796 (2001).

63. Poss, Z. C., Ebmeier, C. C. & Taatjes, D. J. The Mediator complex and
transcription regulation. Crit. Rev. Biochem. Mol. Biol. 48, 575–608 (2013).

64. Decker, K. B. & Hinton, D. M. Transcription regulation at the core:
similarities among bacterial, archaeal, and eukaryotic RNA polymerases.
Annu. Rev. Microbiol. 67, 113–139 (2013).

65. Roy, A. L. & Singer, D. S. Core promoters in transcription: old problem, new
insights. Trends Biochem. Sci. 40, 165–171 (2015).

66. van Drogen, F., Stucke, V. M., Jorritsma, G. & Peter, M. MAP kinase dynamics
in response to pheromones in budding yeast. Nat. Cell Biol. 3, 1051 (2001).

67. Kafri, M., Metzl-Raz, E., Jona, G. & Barkai, N. The cost of protein production.
Cell Rep. 14, 22–31 (2016).

68. Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an
asexual population. Genetica 102, 127 (1998).

69. van Nimwegen, E., Crutchfield, J. P. & Huynen, M. Neutral evolution of
mutational robustness. Proc. Natl. Acad. Sci. USA 96, 9716–9720 (1999).

70. Kimura, M. On the probability of fixation of mutant genes in a population.
Genetics 47, 713–719 (1962).

Acknowledgements
Work was supported by the University of Arizona and by a Pew Scholarship to J.M., John
Templeton Foundation grant 39667 to J.M., and by National Institutes of Health grants
R35GM118170 to M.L.S. and R01GM076041 to J.M. We thank Hinrich Boeger for
helpful discussions and careful reading of the manuscript, Jasmin Uribe for early work on
this project, and the high-performance computing center at the University of Arizona for
generous allocations.

Author contributions
K.X. and J.M. designed the simulations, analyzed the results, and wrote the manuscript.
K.X. performed the simulations and statistical analyses. K.X., A.K.L., and J.M. wrote the
simulation code. M.L.S. and J.M. conceptualized the initial design of the simulations.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-10388-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks Anton Crombach
and other anonymous reviewer(s) for their contribution to the peer review of this work.
Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10388-6 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2418 | https://doi.org/10.1038/s41467-019-10388-6 | www.nature.com/naturecommunications 13

https://doi.org/10.1038/s41467-019-10388-6
https://doi.org/10.1038/s41467-019-10388-6
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Feed-forward regulation adaptively evolves via dynamics rather than topology when there is intrinsic noise
	Results
	Model overview
	AND-gated C1-FFLs readily evolve as spurious signal filters
	More complex networks also evolve diamond motifs
	Weak TFBSs change how motifs are scored
	Diamonds also evolve without external spurious signals

	Discussion
	Methods
	Transcription factor binding
	Transcriptional regulation
	mRNA and protein dynamics
	Gene expression simulation
	Fitness
	Evolutionary simulation
	Genotype initialization
	Mutation
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




