
 

COSMOS: Python library for massively parallel workflows

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Gafni, Erik, Lovelace J. Luquette, Alex K. Lancaster, Jared B.
Hawkins, Jae-Yoon Jung, Yassine Souilmi, Dennis P. Wall, and
Peter J. Tonellato. 2014. “COSMOS: Python library for massively
parallel workflows.” Bioinformatics 30 (20): 2956-2958.
doi:10.1093/bioinformatics/btu385.
http://dx.doi.org/10.1093/bioinformatics/btu385.

Published Version doi:10.1093/bioinformatics/btu385

Accessed February 17, 2015 2:21:23 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13347394

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28951745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/13347394&title=COSMOS%3A+Python+library+for+massively+parallel+workflows
http://dx.doi.org/10.1093/bioinformatics/btu385
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13347394
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Vol. 30 no. 20 2014, pages 2956–2958
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu385

Genome analysis Advance Access publication June 30, 2014

COSMOS: Python library for massively parallel workflows
Erik Gafni1,y,z, Lovelace J. Luquette1,y, Alex K. Lancaster1,2, Jared B. Hawkins1,
Jae-Yoon Jung1, Yassine Souilmi1,3, Dennis P. Wall1,2,*,x and Peter J. Tonellato1,2,*
1Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck Street, Boston, MA 02115, 2Department of
Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA and 3Department of
Biology, Mohammed V University-Agal, 4 Ibn Battouta Avenue, Rabat B.P:1014RP, Morocco

Associate Editor: Michael Brudno

ABSTRACT

Summary: Efficient workflows to shepherd clinically generated gen-

omic data through the multiple stages of a next-generation sequen-

cing pipeline are of critical importance in translational biomedical

science. Here we present COSMOS, a Python library for workflow

management that allows formal description of pipelines and partition-

ing of jobs. In addition, it includes a user interface for tracking the

progress of jobs, abstraction of the queuing system and fine-grained

control over the workflow. Workflows can be created on traditional

computing clusters as well as cloud-based services.

Availability and implementation: Source code is available for acad-

emic non-commercial research purposes. Links to code and docu-

mentation are provided at http://lpm.hms.harvard.edu and http://

wall-lab.stanford.edu.

Contact: dpwall@stanford.edu or peter_tonellato@hms.harvard.edu.

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on February 7, 2014; revised on May 6, 2014; accepted on

June 9, 2014

1 INTRODUCTION

The growing deluge of data from next-generation sequencers

leads to analyses lasting hundreds or thousands of compute

hours per specimen, requiring massive computing clusters or

cloud infrastructure. Existing computational tools like Pegasus

(Deelman et al., 2005) and more recent efforts like Galaxy

(Goecks et al., 2010) and Bpipe (Sadedin et al., 2012) allow the

creation and execution of complex workflows. However, few

projects have succeeded in describing complicated workflows in

a simple, but powerful, language that generalizes to thousands of

input files; fewer still are able to deploy workflows onto distrib-

uted resource management systems (DRMs) such as Platform

Load Sharing Facility (LSF) or Sun Grid Engine that stitch to-

gether clusters of thousands of compute cores. Here we describe

COSMOS, a Python library developed to address these and other

needs.

2 FEATURES AND METHODS

An essential challenge for a workflow definition language is to

separate the definition of tools (which represent individual ana-

lyses) from the definition of the dependencies between them.

Several workflow libraries require each tool to expect specifically

named input files and produce similarly specific output files;

however, in COSMOS, tool I/O is instead controlled by specify-

ing file types. For example, the BWA alignment tool (Fig. 1a) can

expect FASTQ-typed inputs and produce a SAM-typed output,

but does not depend on any specific file names or locations.

Additionally, tool definitions do not require knowledge of the

controlling DRM.

Once tools have been defined, their dependencies can be for-

malized via a COSMOS workflow, which is defined using Python

functions that support the map-reduce paradigm (Dean and

Ghemawat, 2004) (Fig. 1b). Sequential workflows are defined

primarily by the sequence_ primitive, which runs tools in

series. The apply_ primitive is provided to describe workflows

with potentially unrelated branching by executing tools in paral-

lel. To facilitate map-reduce in large and branching workflows,

COSMOS introduces a tagging system that associates a set of

key-value tags (e.g. a sample ID, chunk ID, sequencer ID or

other job parameter) with specific job instances. This tagging

feature enables users to formalize reductions over existing tag

sets or to split by creating new combinations of tags

(Supplementary Fig. S1). To execute a workflow, COSMOS

creates a directed acyclic graph (DAG) of tool dependencies at

runtime (Fig. 1c) and automatically links the inputs and outputs

between tools by recognizing file extensions as types. All file

paths generated by tool connections are managed by

COSMOS, automatically assigning intermediate file names.
Another major challenge in workflow management is execu-

tion on large compute clusters, where transient errors are com-

monplace and must be handled gracefully. If errors cannot be

automatically resolved, the framework should record exactly

which jobs have failed and allow the restart of an analysis

after error resolution. COSMOS uses the DRMAA library

(Troger et al. 2007) to manage job submission, status checking

and error handling. DRMAA supports most DRM platforms,

including Condor, although our efforts used LSF and Sun Grid

Engine. Users may control DRM submission parameters by

*To whom correspondence should be addressed.
yThe authors wish it to be known that, in their opinion, the first two
authors should be regarded as Joint First Authors.
zPresent address: Invitae 458 Brannan St., San Francisco, CA 94107,
USA.
xPresent address: Department of Pediatrics, Division of Systems
Medicine, Stanford University, 1265 Welch Road, Stanford, CA, USA.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

http://lpm.hms.harvard.edu
http://wall-lab.stanford.edu
http://wall-lab.stanford.edu
mailto:dpwall@stanford.edu
mailto:peter_tonellato@hms.harvard.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu385/-/DC1
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu385/-/DC1
tiliz
XPath error Undefined namespace prefix
XPath error Undefined namespace prefix


overriding a Python function that is called on every job control

event. COSMOS’ internal data structures are stored in an SQL

database using the Django framework (https://djangoproject.

com) and is distributed with a Web application for monitoring

the state of both running and completed workflows, querying

individual job states, visualizing DAGs and debugging failed

jobs (Supplementary Figs S2–S5).
Each COSMOS job is continuously monitored for resource

usage, and a summary of these statistics and standard output

and error streams are stored in the database. This allows users

to fine-tune estimated DRM parameters such as CPU and

memory usage for more efficient cluster usage. Pipeline restarts

are also facilitated by the persistent database, as it records both

success and failure using job exit codes.

3 COMPARISON AND DISCUSSION

Projects such as Galaxy and Taverna (Wolstencroft et al., 2013)

are aimed at users without programming expertize and offer

graphical user interfaces (GUIs) to create workflows, but come

at the expense of power. For example, it is straightforward to

describe task dependencies in Galaxy’s drag-and-drop workflow

creator; however, to parallelize alignment by breaking the input

FASTQ into several smaller chunks to be aligned independently,

input stages must be manually created for each chunk or the

workflow must be applied to each chunk manually. In addition,

the user must fix the number of input chunks a priori. COSMOS

resolves this tedious process for the programmer by dynamically

building its DAG at runtime.
Such limitations may not be a major concern for small-scale

experiments where massive parallelization to reduce runtime is

not critical; however, when regularly analyzing terabytes of raw

data, the logistics of parallelization and job management play a

central role. Snakemake (K €oster and Rahmann, 2012) looks to

the proven design of GNU Make to describe DAGs for compli-

cated workflows, whereas the Ruffus project (Goodstadt, 2010)

aims to create a DAG by providing a library of Python decor-

ators. However, neither of these projects directly supports inte-

gration with a DRM. The Pegasus system offers excellent

integration with DRMs and even the assembly of several inde-

pendent DRMs using the Globus software; however, the descrip-

tion of some simple workflows can require considerably more

code than the equivalent COSMOS code (Supplementary Fig.

S6), and the DAG is not determined at runtime, so cannot

depend on the input. Bpipe offers an elegant syntax for defining

the DAG, but does not include a graphic user interface for moni-

toring and runtime statistics. Additionally, COSMOS’ persistent

database and Web front end allow rapid diagnosis of errors in

data input or workflow execution (see Supplementary Table S1

for a detailed feature comparison). COSMOS has been tested on

the Ubuntu, Debian and Fedora Linux distributions. The only

dependency is Python 2.6 or newer and the ability to install

Python packages; we recommend a DRMAA-compatible

DRM for intensive workloads.

Funding: This work was supported by the National Institutes

of Health [1R01MH090611-01A1 to D.P.W, 1R01LM011566

to P.J.T., and 5T15LM007092 to P.J.T. and J.B.H.]; and a

Fulbright Fellowship [to Y.S.].

Conflict of Interest: L.J.L. is also an employee with Claritas

Genomics Inc., a licensee of COSMOS.

REFERENCES

Dean,J. and Ghemawat,S. (2004) MapReduce: simplified data processing on large

clusters. In: Proceedings of the 6th Conference on Symposium on Operating

Systems Design & Implementation. USENIX Association, Berkeley, CA, p. 10.

Deelman,E. et al. (2005) Pegasus: A framework for mapping complex scientific

workflows onto distributed systems. Sci. Program., 13, 219–237.

Goecks,J. et al. (2010) Galaxy: a comprehensive approach for supporting accessible,

reproducible, and transparent computational research in the life sciences.

Genome Biol, 11, R86.

(a) (c)

(b)

Visualization of workflow

Fig. 1. (a) Tools are defined in COSMOS by specifying input and output types, not files, and a cmd() function returning a string to be executed in

a shell. cpu_req and other parameters may be inspected by a programmer-defined Python function to set DRM parameters or redirect jobs to queues.

(b) Workflows are defined using map-reduce primitives: sequence_, map_ (execute the align tool from (a) on each ‘chunk’ in parallel) and reduce_

(group the aligned outputs by sample tag). (c) Directed acyclic graph of jobs generated by the workflow in (b) to be executed via the DRM for four input

FASTQ files (with sample tags s1 and s2, and chunk tags of c1 and c2)

2957

COSMOS

https://djangoproject.com
https://djangoproject.com
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu385/-/DC1
tilization
s
ile
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu385/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu385/-/DC1
w
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu385/-/DC1
]
uquette


Goodstadt,L. (2010) Ruffus: a lightweight Python library for computational pipe-

lines. Bioinformatics, 26, 2778–2779.

K €oster,J. and Rahmann,S. (2012) Snakemake—a scalable bioinformatics workflow

engine. Bioinformatics, 28, 2520–2522.

Sadedin,S.P. et al. (2012) Bpipe: a tool for running and managing bioinformatics

pipelines. Bioinformatics, 28, 1525–1526.

Troger,P. et al. (2007) Standardization of an API for distributed resource manage-

ment systems. In: Seventh IEEE International Symposium on Cluster Computing

and the Grid. IEEE, Rio De Janeiro, Brazil, pp. 619–626.

Wolstencroft,K. et al. (2013) The Taverna workflow suite: designing and executing

workflows of Web Services on the desktop, Web or in the cloud. Nucleic Acids

Res., 41, W557–W561.

2958

E.Gafni et al.


