97 research outputs found

    Difference in root K+ retention ability and reduced sensitivity of K+ -permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species

    Get PDF
    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea. At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na+ extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na+/H+ exchangers; (ii) better root K+ retention ability resulting from stress-inducible activation of H+-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K+ -permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species

    Unravelling the physiological basis of salinity stress tolerance in cultivated and wild rice species

    Get PDF
    Wild rice species provide a rich source of genetic diversity for possible introgression of salinity stress tolerance in cultivated rice. We investigated the physiological basis of salinity stress tolerance in Oryza species by using six rice genotypes (Oryza sativa L.) and four wild rice species. Three weeks of salinity treatment significantly (P < 0.05) reduced physiological and growth indices of all cultivated and wild rice lines. However, the impact of salinity-induced growth reduction differed substantially among accessions. Salt tolerant accessions showed better control over gas exchange properties, exhibited higher tissue tolerance, and retained higher potassium ion content despite higher sodium ion accumulation in leaves. Wild rice species showed relatively lower and steadier xylem sap sodium ion content over the period of 3 weeks analysed, suggesting better control over ionic sodium xylem loading and its delivery to shoots with efficient vacuolar sodium ion sequestration. Contrary to this, saline sensitive genotypes managed to avoid initial Na+ loading but failed to accomplish this in the long term and showed higher sap sodium ion content. Conclusively, our results suggest that wild rice genotypes have more efficient control over xylem sodium ion loading, rely on tissue tolerance mechanisms and allow for a rapid osmotic adjustment by using sodium ions as cheap osmoticum for osmoregulation

    Comparative analysis of Root Na+ relation under salinity between Oryza sativa and Oryza coarctata

    Get PDF
    Na+ toxicity is one of the major physiological constraints imposed by salinity on plant performance. At the same time, Na+ uptake may be beneficial under some circumstances as an easily accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell turgor. Two rice species, Oryza sativa (cultivated rice, salt-sensitive) and Oryza coarctata (wild rice, salt-tolerant), demonstrated different strategies in controlling Na+ uptake. Glasshouse experiments and gene expression analysis suggested that salt-treated wild rice quickly increased xylem Na+ loading for osmotic adjustment but maintained a non-toxic level of stable shoot Na+ concentration by increased activity of a high affinity K+ transporter HKT1;5 (essential for xylem Na+ unloading) and a Na+ /H+ exchanger NHX (for sequestering Na+ and K+ into root vacuoles). Cultivated rice prevented Na+ uptake and transport to the shoot at the beginning of salt treatment but failed to maintain it in the long term. While electrophysiological assays revealed greater net Na+ uptake upon salt application in cultivated rice, O. sativa plants showed much stronger activation of the root plasma membrane Na+ /H+ Salt Overly Sensitive 1 (SOS1) exchanger. Thus, it appears that wild rice limits passive Na+ entry into root cells while cultivated rice relies heavily on SOS1-mediating Na+ exclusion, with major penalties imposed by the existence of the ā€œfutile cycleā€ at the plasma membrane

    Prolonged AĪ² treatment leads to impairment in the ability of primary cortical neurons to maintain K+ and Ca2+ homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is a progressive neurodegenerative disease, characterised by the formation of insoluble amyloidogenic plaques and neurofibrillary tangles. Beta amyloid (AĪ²) peptide is one of the main constituents in AĪ² plaques, and is thought to be a primary causative agent in AD. Neurons are likely to be exposed to chronic, sublethal doses of AĪ² over an extended time during the pathogenesis of AD, however most studies published to date using <it>in vitro </it>models have focussed on acute studies. To experimentally model the progressive pathogenesis of AD, we exposed primary cortical neurons daily to 1 Ī¼M of AĪ²<sub>1-40 </sub>over 7 days and compared their survival with age-similar untreated cells. We also investigated whether chronic AĪ² exposure affects neuronal susceptibility to the subsequent acute excitotoxicity induced by 10 Ī¼M glutamate and assessed how Ca<sup>2+ </sup>and K<sup>+ </sup>homeostasis were affected by either treatment.</p> <p>Results</p> <p>We show that continuous exposure to 1 Ī¼M AĪ²<sub>1-40 </sub>for seven days decreased survival of cultured cortical neurons by 20%. This decrease in survival correlated with increased K<sup>+ </sup>efflux from the cells. One day treatment with 1 Ī¼M AĪ² followed by glutamate led to a substantially higher K<sup>+ </sup>efflux than in the age-similar untreated control. This difference further increased with the duration of the treatment. K<sup>+ </sup>efflux also remained higher in AĪ² treated cells 20 min after glutamate application leading to 2.8-fold higher total K<sup>+ </sup>effluxed from the cells compared to controls. Ca<sup>2+ </sup>uptake was significantly higher only after prolonged AĪ² treatment with 2.5-fold increase in total Ca<sup>2+ </sup>uptake over 20 min post glutamate application after six days of AĪ² treatment or longer (P < 0.05).</p> <p>Conclusions</p> <p>Our data suggest that long term exposure to AĪ² is detrimental because it reduces the ability of cortical neurons to maintain K<sup>+ </sup>and Ca<sup>2+ </sup>homeostasis in response to glutamate challenge, a response that might underlie the early symptoms of AD. The observed inability to maintain K<sup>+ </sup>homeostasis might furthermore be useful in future studies as an early indicator of pathological changes in response to AĪ².</p

    Revealing the role of the calcineurin B-like protein-interacting protein kinase 9 (CIPK9) in rice adaptive responses to salinity, osmotic stress, and K+ deficiency

    Get PDF
    In plants, calcineurin B-like (CBL) proteins and their interacting protein kinases (CIPK) form functional complexes that transduce downstream signals to membrane effectors assisting in their adaptation to adverse environmental conditions. This study addresses the issue of the physiological role of CIPK9 in adaptive responses to salinity, osmotic stress, and K+ deficiency in rice plants. Whole-plant physiological studies revealed that Oscipk9 rice mutant lacks a functional CIPK9 gene and displayed a mildly stronger phenotype, both under saline and osmotic stress conditions. The reported difference was attributed to the ability of Oscipk9 to maintain significantly higher stomatal conductance (thus, a greater carbon gain). Oscipk9 plants contained much less K+ in their tissues, implying the role of CIPK9 in K+ acquisition and homeostasis in rice. Oscipk9 roots also showed hypersensitivity to ROS under conditions of low K+ availability suggesting an important role of H2O2 signalling as a component of plant adaptive responses to a low-K environment. The likely mechanistic basis of above physiological responses is discussed

    Root vacuolar Na+ sequestration but not exclusion from uptake correlates with barley salt tolerance.

    Get PDF
    SummarySoil salinity is a major constraint for the global agricultural production. For many decades, Na+ exclusion from uptake has been the key trait targeted in breeding programs; yet, no major breakthrough in creating saltā€tolerant germplasm was achieved. In this work, we have combined the microelectrode ion flux estimation (MIFE) technique for nonā€invasive ion flux measurements with confocal fluorescence dye imaging technique to screen 45 accessions of barley to reveal the relative contribution of Na+ exclusion from the cytosol to the apoplast and its vacuolar sequestration in the root apex, for the overall salinity stress tolerance. We show that Na+/H+ antiporterā€mediated Na+ extrusion from the root plays a minor role in the overall salt tolerance in barley. At the same time, a strong and positive correlation was found between root vacuolar Na+ sequestration ability and the overall salt tolerance. The inability of saltā€sensitive genotypes to sequester Na+ in root vacuoles was in contrast to significantly higher expression levels of both HvNHX1 tonoplast Na+/H+ antiporters and HvVP1 H+ā€pumps compared with tolerant genotypes. These data are interpreted as a failure of sensitive varieties to prevent Na+ backā€leak into the cytosol and existence of a futile Na+ cycle at the tonoplast. Taken together, our results demonstrated that root vacuolar Na+ sequestration but not exclusion from uptake played the main role in barley salinity tolerance, and suggested that the focus of the breeding programs should be shifted from targeting genes mediating Na+ exclusion from uptake by roots to more efficient root vacuolar Na+ sequestration

    Comparing essentiality of SOS1-mediated Na+ exclusion in salinity tolerance between cultivated and wild rice species

    Get PDF
    Soil salinity is a major constraint that affects plant growth and development. Rice is a staple food for more than half of the human population but is extremely sensitive to salinity. Among the several known mechanisms, the ability of the plant to exclude cytosolic Na+ is strongly correlated with salinity stress tolerance in different plant species. This exclusion is mediated by the plasma membrane (PM) Na+/H+ antiporter encoded by Salt Overly Sensitive (SOS1) gene and driven by a PM H+ -ATPase generated proton gradient. However, it is not clear to what extent this mechanism is operational in wild and cultivated rice species, given the unique rice root anatomy and the existence of the bypass flow for Na+ . As wild rice species provide a rich source of genetic diversity for possible introgression of abiotic stress tolerance, we investigated physiological and molecular basis of salinity stress tolerance in Oryza species by using two contrasting pairs of cultivated (Oryza sativa) and wild rice species (Oryza alta and Oryza punctata). Accordingly, dose- and age-dependent Na+ and H+ fluxes were measured using a non-invasive ion selective vibrating microelectrode (the MIFE technique) to measure potential activity of SOS1-encoded Na+/H+ antiporter genes. Consistent with GUS staining data reported in the literature, rice accessions had (~4ā€“6-fold) greater net Na+ efflux in the root elongation zone (EZ) compared to the mature root zone (MZ). Pharmacological experiments showed that Na+ efflux in root EZ is suppressed by more than 90% by amiloride, indicating the possible involvement of Na+/H+ exchanger activity in root EZ. Within each group (cultivated vs. wild) the magnitude of amiloride-sensitive Na+ efflux was higher in tolerant genotypes; however, the activity of Na+/H+ exchanger was 2ā€“3-fold higher in the cultivated rice compared with their wild counterparts. Gene expression levels of SOS1, SOS2 and SOS3 were upregulated under 24 h salinity treatment in all the tested genotypes, with the highest level of SOS1 transcript detected in salt-tolerant wild rice genotype O. alta (~5ā€“6-fold increased transcript level) followed by another wild rice, O. punctata. There was no significant difference in SOS1 expression observed for cultivated rice (IR1-tolerant and IR29-sensitive) under both 0 and 24 h salinity exposure. Our findings suggest that salt-tolerant cultivated rice relies on the cytosolic Na+ exclusion mechanism to deal with salt stress to a greater extent than wild rice, but its operation seems to be regulated at a post-translational rather than transcriptional level

    Evolutionary significance of NHX family and NHX1 in salinity stress adaptation in the genus Oryza

    Get PDF
    Rice (Oryza sativa), a staple crop for a substantial part of the worldā€™s population, is highly sensitive to soil salinity; however, some wild Oryza relatives can survive in highly saline environments. Sodium/hydrogen antiporter (NHX) family members contribute to Na+ homeostasis in plants and play a major role in conferring salinity tolerance. In this study, we analyzed the evolution of NHX family members using phylogeny, conserved domains, tertiary structures, expression patterns, and physiology of cultivated and wild Oryza species to decipher the role of NHXs in salt tolerance in Oryza. Phylogenetic analysis showed that the NHX family can be classified into three subfamilies directly related to their subcellular localization: endomembrane, plasma membrane, and tonoplast (vacuolar subfamily, vNHX1). Phylogenetic and structural analysis showed that vNHX1s have evolved from streptophyte algae (e.g., Klebsormidium nitens) and are abundant and highly conserved in all major land plant lineages, including Oryza. Moreover, we showed that tissue tolerance is a crucial trait conferring tolerance to salinity in wild rice species. Higher Na+ accumulation and reduced Na+ effluxes in leaf mesophyll were observed in the salt-tolerant wild rice species O. alta, O. latifolia, and O. coarctata. Among the key genes affecting tissue tolerance, expression of NHX1 and SOS1/NHX7 exhibited significant correlation with salt tolerance among the rice species and cultivars. This study provides insights into the evolutionary origin of plant NHXs and their role in tissue tolerance of Oryza species and facilitates the inclusion of this trait during the development of salinity-tolerant rice cultivars

    Salinity effects on guard cell proteome in chenopodium quinoa

    Get PDF
    Epidermal fragments enriched in guard cells (GCs) were isolated from the halophyte quinoa (Chenopodium quinoa Wild.) species, and the response at the proteome level was studied after salinity treatment of 300 mM NaCl for 3 weeks. In total, 2147 proteins were identified, of which 36% were differentially expressed in response to salinity stress in GCs. Up and downregulated proteins included signaling molecules, enzyme modulators, transcription factors and oxidoreductases. The most abundant proteins induced by salt treatment were desiccation-responsive protein 29B (50-fold), osmotin-like protein OSML13 (13-fold), polycystin-1, lipoxygenase, alpha-toxin, and triacylglycerol lipase (PLAT) domain-containing protein 3-like (eight-fold), and dehydrin early responsive to de-hydration (ERD14) (eight-fold). Ten proteins related to the gene ontology term ā€œresponse to ABAā€ were upregulated in quinoa GC; this included aspartic protease, phospholipase D and plastid-lipid-associated protein. Additionally, seven proteins in the sucroseā€“starch pathway were upregulated in the GC in response to salinity stress, and accumulation of tryptophan synthase and L-methionine synthase (enzymes involved in the amino acid biosynthesis) was observed. Exogenous application of sucrose and tryptophan, L-methionine resulted in reduction in stomatal aperture and conductance, which could be advantageous for plants under salt stress. Eight aspartic proteinase proteins were highly upregulated in GCs of quinoa, and exogenous application of pepstatin A (an inhibitor of aspartic proteinase) was accompanied by higher oxidative stress and extremely low stomatal aperture and conductance, suggesting a possible role of aspartic proteinase in mitigating oxidative stress induced by saline conditions

    Changes in expression level of OsHKT1;5 alters activity of membrane transporters involved in K+ and Ca2+ acquisition and homeostasis in salinized rice roots

    Get PDF
    In rice, the OsHKT1;5 gene has been reported to be a critical determinant of salt tolerance. This gene is harbored by the SKC1 locus, and its role was attributed to Na+ unloading from the xylem. No direct evidence, however, was provided in previous studies. Also, the reported function of SKC1 on the loading and delivery of K+ to the shoot remains to be explained. In this work, we used an electrophysiological approach to compare the kinetics of Na+ uptake by root xylem parenchyma cells using wild type (WT) and NIL(SKC1) plants. Our data showed that Na+ reabsorption was observed in WT, but not NIL(SKC1) plants, thus questioning the functional role of HKT1;5 as a transporter operating in the direct Na+ removal from the xylem. Instead, changes in the expression level of HKT1;5 altered the activity of membrane transporters involved in K+ and Ca2+ acquisition and homeostasis in the rice epidermis and stele, explaining the observed phenotype. We conclude that the role of HKT1;5 in plant salinity tolerance cannot be attributed to merely reducing Na+ concentration in the xylem sap but triggers a complex feedback regulation of activities of other transporters involved in the maintenance of plant ionic homeostasis and signaling under stress conditions
    • ā€¦
    corecore