284 research outputs found

    3β-Acet­oxy-8β,10β-dihy­droxy-6β-meth­oxy­eremophil-7(11)-en-8,12-olide

    Get PDF
    The title compound, C18H26O7, is an eremophilenolide which has been isolated from the plant Ligularia duciformis for the first time. The present study confirms the atomic connectivity assigned on the basis of 1H and 13C NMR spectroscopy. The mol­ecule contains three fused rings, two six-membered rings in chair confomations and a five-membered ring in a flattened envelope conformation. Two hy­droxy groups are involved in formation of intra- and inter­molecular O—H⋯O hydrogen bonds. The latter ones link mol­ecules into chains propagating in [010]

    N-(2-Chloro­benzo­yl)-N′-(3-pyrid­yl)thio­urea

    Get PDF
    In the mol­ecule of the title compound, C13H10ClN3OS, the dihedral angles between the plane through the thio­urea group and the pyridine and benzene rings are 53.08 (3) and 87.12 (3)°, respectively. The mol­ecules are linked by inter­molecular N—H⋯N hydrogen-bonding inter­actions to form a supra­molecular chain structure along the a axis. An intra­mol­ecular N—H⋯O hydrogen bond is also present

    Enhanced Root and Stem Growth and Physiological Changes in Pinus bungeana Zucc. Seedlings by Microbial Inoculant Application

    Get PDF
    Background and Objectives: As an extensively used tree species in landscaping and afforestation in China, lacebark pine (Pinus bungeana Zucc.) seedlings are in high demand. However, the small number of fine roots and the low growth rate of lacebark pine seedlings increase the risks encountered during transplant and extend the nursery time for outplanting. We aimed to find out whether a microbial inoculant would promote root growth and accordingly, shorten the nursery cultivation time. Materials and Methods: One-year-old lacebark pine seedlings were treated with the inoculant Bacillus subtilis 8–32 six times from June to September. At each application time, five treatments of undiluted microbial inoculants (UM), 30 times diluted microbial inoculants (30 DM), 40 times diluted microbial inoculants (40 DM), 50 times diluted microbial inoculants (50 DM), and distilled water as a control (CTRL) were administered to the seedlings. In the end, all the seedlings were harvested to measure the root growth, aboveground growth, and the physiological indices. Results: Root and stem growth was enhanced by the inoculants in terms of the increased number of root tips, the length and surface area of the roots, the biomass of the roots and stems, as well as the increase in height and basal stem diameter. The chlorophyll a/b of the needles was increased, in spite of the fact that the total chlorophyll content was decreased by the microbial inoculant treatments at the end of the growth phase. Meanwhile, the maximum photochemical efficiency (Fv/Fm) of the needles was increased by the inoculant treatments. The soluble sugar content was additionally translocated into the stems in the UM treatment, suggesting the change in carbon allocation. The content of available potassium, phosphorus, and ammonium nitrogen in the potting soil was increased in the 30 DM group, and the content of soil organic matter was increased in all the inoculant treatments. Conclusions: The microbial inoculant Bacillus subtilis 8–32, in appropriate concentrations, could be applied to promote root and shoot growth and improve the seedling quality of the lacebark pine during cultivation

    Validation of 58 autosomal individual identification SNPs in three Chinese populations

    Get PDF
    Aim To genotype and evaluate a panel of single-nucleotide polymorphisms for individual identification (IISNPs) in three Chinese populations: Chinese Han, Uyghur, and Tibetan. Methods Two previously identified panels of IISNPs, 86 unlinked IISNPs and SNPforID 52-plex markers, were pooled and analyzed. Four SNPs were included in both panels. In total, 132 SNPs were typed on Sequenom MassARRAY® platform in 330 individuals from Han Chinese, Uyghur, and Tibetan populations. Population genetic indices and forensic parameters were determined for all studied markers. Results No significant deviation from Hardy-Weinberg equilibrium was observed for any of the SNPs in 3 populations. Expected heterozygosity (He) ranged from 0.144 to 0.500 in Han Chinese, from 0.197 to 0.500 in Uyghur, and from 0.018 to 0.500 in Tibetan population. Wright’s Fst values ranged from 0.0001 to 0.1613. Pairwise linkage disequilibrium (LD) calculations for all 132 SNPs showed no significant LD across the populations (r2<0.147). A subset of 58 unlinked IISNPs (r20.450 and Fst values from 0.0002 to 0.0536 gave match probabilities of 10−25 and a cumulative probability of exclusion of 0.999992. Conclusion The 58 unlinked IISNPs with high heterozygosity have low allele frequency variation among 3 Chinese populations, which makes them excellent candidates for the development of multiplex assays for individual identification and paternity testing

    3,3′-Bis(4-nitro­phen­yl)-1,1′-(p-phenyl­ene)dithio­urea dimethyl sulfoxide disolvate

    Get PDF
    The asymmetric unit of the title compound, C22H16N6O6S2·2C2H6OS, consists of one half-mol­ecule of the centrosymmetric thiourea derivative and one molecule of dimethyl sulfoxide (DMSO). The carbonyl group forms an intra­molecular hydrogen bond with the NH group, creating a six-membered (C—N—C—N—H⋯O) ring. Two other N—H⋯O hydro­gen bonds link one mol­ecule of the thio­urea to two mol­ecules of DMSO

    Uniparental Genetic Analyses Reveal the Major Origin of Fujian Tanka from Ancient Indigenous Daic Populations

    Get PDF
    The Fujian Tanka people are officially classified as a southern Han ethnic group while they have customs similar to Daic and Austronesion people. Whether they originated in Han or Daic people, there is no consensus. Three hypotheses have been proposed to explain the origin of this group: 1) the Han Chinese origin, 2) the ancient Daic origin, 3) and the admixture between Daic and Han. In this study, we address this issue by analyzing the paternal Y chromosome and maternal mtDNA variation of 62 Fujian Tanka and 25 neighboring Han in Fujian. We found that the southern East Asian predominant haplogroups, e.g. O1a1a-P203 and O1b1a1a-M95 of Y chromosome and F2a, M7c1, and F1a1 of mtDNA, reach relatively high frequencies in Tanka. The interpopulation comparison reveals that the Tanka have a closer affinity with Daic populations than with Han Chinese in paternal lineages while are closely clustered with southern Han populations such as Hakka and Chaoshanese in maternal lineages. Network and haplotype-sharing analyses also support the admixture hypothesis. The Fujian Tanka mainly originate from the ancient indigenous Daic people and have only limited gene flows from Han Chinese populations. Notably, the divergence time inferred by the Tanka-specific haplotypes indicates that the formation of Fujian Tanka was a least 1033.8-1050.6 years before present (the early Northern Song Dynasty), indicating that they are indigenous population, not late Daic migrants from southwestern China

    Uniparental Genetic Analyses Reveal the Major Origin of Fujian Tanka from Ancient Indigenous Daic Populations

    Get PDF
    The Fujian Tanka people are officially classified as a southern Han ethnic group while they have customs similar to Daic and Austronesion people. Whether they originated in Han or Daic people, there is no consensus. Three hypotheses have been proposed to explain the origin of this group: 1) the Han Chinese origin, 2) the ancient Daic origin, 3) and the admixture between Daic and Han. In this study, we address this issue by analyzing the paternal Y chromosome and maternal mtDNA variation of 62 Fujian Tanka and 25 neighboring Han in Fujian. We found that the southern East Asian predominant haplogroups, e.g. O1a1a-P203 and O1b1a1a-M95 of Y chromosome and F2a, M7c1, and F1a1 of mtDNA, reach relatively high frequencies in Tanka. The interpopulation comparison reveals that the Tanka have a closer affinity with Daic populations than with Han Chinese in paternal lineages while are closely clustered with southern Han populations such as Hakka and Chaoshanese in maternal lineages. Network and haplotype-sharing analyses also support the admixture hypothesis. The Fujian Tanka mainly originate from the ancient indigenous Daic people and have only limited gene flows from Han Chinese populations. Notably, the divergence time inferred by the Tanka-specific haplotypes indicates that the formation of Fujian Tanka was a least 1033.8-1050.6 years before present (the early Northern Song Dynasty), indicating that they are indigenous population, not late Daic migrants from southwestern China

    An Arabidopsis GSK3/shaggy

    Full text link

    Local Anesthesia at ST36 to Reveal Responding Brain Areas to deqi

    Get PDF
    Background. Development of non-deqi control is still a challenge. This study aims to set up a potential approach to non-deqi control by using lidocaine anesthesia at ST36. Methods. Forty healthy volunteers were recruited and they received two fMRI scans. One was accompanied with manual acupuncture at ST36 (DQ group), and another was associated with both local anesthesia and manual acupuncture at the same acupoint (LA group). Results. Comparing to DQ group, more than 90 percent deqi sensations were reduced by local anesthesia in LA group. The mainly activated regions in DQ group were bilateral IFG, S1, primary motor cortex, IPL, thalamus, insula, claustrum, cingulate gyrus, putamen, superior temporal gyrus, and cerebellum. Surprisingly only cerebellum showed significant activation in LA group. Compared to the two groups, bilateral S1, insula, ipsilateral IFG, IPL, claustrum, and contralateral ACC were remarkably activated. Conclusions. Local anesthesia at ST36 is able to block most of the deqi feelings and inhibit brain responses to deqi, which would be developed into a potential approach for non-deqi control. Bilateral S1, insula, ipsilateral IFG, IPL, claustrum, and contralateral ACC might be the key brain regions responding to deqi
    corecore