11,672 research outputs found

    An investigation of vortex-induced aerodynamic characteristics of supersonic cruise configurations

    Get PDF
    The linear lifting surface theory which predicts the life in supersonic flow, even though the drag is usually underpredicted, is described. A method for calculating the nonlinear wave drag was developed to remedy this deficiency. The calculated sectional drag is modified by adding the difference between the exact two dimensional (2-D) and the linear 2-D wave drag at the calculated sectional lift coefficient. Improvement in the supersonic drag prediction is shown. The VORCAM code was modified for the FORTRAN 77 language and its input stream was rearranged. The Boeing code was adapted to the computer system. All CDC special features in the code are replaced with standard FORTRAN algorithms. It is suggested that because of the nonlinearity the solution appears to be nonunique crowding of two vortices, a mechanism of vortex asymmetry, is investigated

    Upper-surface-blowing jet wing interaction

    Get PDF
    A linear, inviscid, subsonic compressible flow theory is formulated for predicting the aerodynamic characteristics of upper-surface-blowing configurations. The effect of the thick jet is represented by a two-vortex-sheet model in order to account for the Mach number nonuniformity. The wing loading with the jet interaction effects is computed by satisfying boundary conditions on the wing and the jet surfaces. The vortex model is discussed in detail

    Applications of CONMIN to wing design optimization with vortex flow effect

    Get PDF
    Slender wings on supersonic cruise configurations are expected to be thin and highly swept. As a result, edge-separated vortex flow is inevitable and must be accounted for in aerodynamic analysis and design. The present method is based on the method of suction analogy to calculate the total aerodynamic characteristics. The method requires the solution of the attached flow problem, the latter being solved by a low-order panel method in subsonic and supersonic flow. In essence, the lifting pressure is calculated by using a pressure-doublet distribution satisfying the Prandtl-Glauert equation. From the pressure distribution, the leading-edge suction is calculated. The latter is assumed to be the vortex lift through the method of suction analogy. For a cambered wing, the location of vortex-lift action point is important in predicting the aerodynamic characteristics. It is also seen that the effect of camber shape appears nonlinearly in all aerodynamic expressions. To design the camber shape, the camber slope is represented by a cosine Fourier series at each of several spanwise stations. The Fourier coefficients are the design variables. To design a leading-edge flap in the vortex flow (i.e., a vortex flap), the coordinates of corner points and the deflection angle are the design variables. The process of wing design is to determine the camber shape and twist distribution such that an objective function, typically the drag, is minimized, subject to various constraints

    Some applications of the quasi vortex-lattice method in steady and unsteady aerodynamics

    Get PDF
    The quasi vortex-lattice method is reviewed and applied to the evaluation of backwash, with applications to ground effect analysis. It is also extended to unsteady aerodynamics, with particular interest in the calculation of unsteady leading-edge suction. Some applications in ornithopter aerodynamics are given

    On the logarithmic-singularity correction in the kernel function method of subsonic lifting-surface theory

    Get PDF
    A logarithmic-singularity correction factor is derived for use in kernel function methods associated with Multhopp's subsonic lifting-surface theory. Because of the form of the factor, a relation was formulated between the numbers of chordwise and spanwise control points needed for good accuracy. This formulation is developed and discussed. Numerical results are given to show the improvement of the computation with the new correction factor

    A theoretical investigation of the aerodynamics of low-aspect-ratio wings with partial leading-edge separation

    Get PDF
    A numerical method is developed to predict distributed and total aerodynamic characteristics for low aspect-ratio wings with partial leading-edge separation. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the quasi-vortex-lattice method. The leading-edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at mid-points to satisfy the force free condition. The wake behind the trailing-edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading- and trailing-edges. Comparison of the predicted results with complete leading-edge separation has shown reasonably good agreement. For cases with partial leading-edge separation, the lift is found to be highly nonlinear with angle of attack

    Transonic airfoil analysis and design in nonuniform flow

    Get PDF
    A nonuniform transonic airfoil code is developed for applications in analysis, inverse design and direct optimization involving an airfoil immersed in propfan slipstream. Problems concerning the numerical stability, convergence, divergence and solution oscillations are discussed. The code is validated by comparing with some known results in incompressible flow. A parametric investigation indicates that the airfoil lift-drag ratio can be increased by decreasing the thickness ratio. A better performance can be achieved if the airfoil is located below the slipstream center. Airfoil characteristics designed by the inverse method and a direct optimization are compared. The airfoil designed with the method of direct optimization exhibits better characteristics and achieves a gain of 22 percent in lift-drag ratio with a reduction of 4 percent in thickness

    A vortex-filament and core model for wings with edge vortex separation

    Get PDF
    A method for predicting aerodynamic characteristics of slender wings with edge vortex separation was developed. Semiempirical but simple methods were used to determine the initial positions of the free sheet and vortex core. Comparison with available data indicates that: the present method is generally accurate in predicting the lift and induced drag coefficients but the predicted pitching moment is too positive; the spanwise lifting pressure distributions estimated by the one vortex core solution of the present method are significantly better than the results of Mehrotra's method relative to the pressure peak values for the flat delta; the two vortex core system applied to the double delta and strake wing produce overall aerodynamic characteristics which have good agreement with data except for the pitching moment; and the computer time for the present method is about two thirds of that of Mehrotra's method

    Calculation of vortex lift effect for cambered wings by the suction analogy

    Get PDF
    An improved version of Woodward's chord plane aerodynamic panel method for subsonic and supersonic flow is developed for cambered wings exhibiting edge separated vortex flow, including those with leading edge vortex flaps. The exact relation between leading edge thrust and suction force in potential flow is derived. Instead of assuming the rotated suction force to be normal to wing surface at the leading edge, new orientation for the rotated suction force is determined through consideration of the momentum principle. The supersonic suction analogy method is improved by using an effective angle of attack defined through a semi-empirical method. Comparisons of predicted results with available data in subsonic and supersonic flow are presented
    corecore