N7817993

| 1 ||1414IIIIIII

NASA Contractor Report 145304

a theoretical investigation of the aerodynamics OF LOW-ASPECT-RATID WINGS HITH PARTIAL LEADING edge separation

Sudhir Chandra Mehrotra and C. Edward Lan

THE UNIVERSITY OF KAISAS CENTER FOR RESEARCH, INC. Lawrence, KS 6 ©. 944

NASA Grant NSG-1046
January 1978

National Aeronautics and
Space Administration
Langley Research Center
Hampton Virg ria 23665

GENERAL DISCLAIMER

This document may be affected by one or more of the following statements

- This document has been reproduced from the best copy furnished by the sponsoring agency. It is being released in the interest of making available as much information as possible.
- This document may contain data which exceeds the sheet parameters. It was furnished in this condition by the sponsoring agency and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

The initial financial support by the University of Kansas General Research Allocation No. 3839-5038 for this research is gratefully acknowledged.

Table of Contents

Chapter	Title	Page
	List of Symbols	iii
1.	Introduction	1
2.	Theoretical Method	9
2.1	Problem Lefinition	9
2.2	Model Geometry	10
2.2 .1	Wing Geometry	10
2.2 .2	Leading-edge Vortex Systemi Geometry	21
2.3	Induced Velocity due to Wing	14
2.4	Induced Velocity due to Leading-edge	17
	Vortex System	
2.5	Boundery Conditions	28
2.5 .2	Formulation of Wing Boundary Condition	19
2.5.2	Formulation of Force Free Condition of	20
	Free Elements	
2. 6	Solution Procedure	23
二.?	Aerodymamic Characteristics	25
3.	Results and Discussion	29
\bullet.	Conclusions and Recommendations	34
5.	Fererences	36
6.	Appendices	42
c. 2	Appendix A: Eveluation of Induced	42
	Velocity due tc a Line Vortex Segment	

Chapter
6.2

2
Appendix B: Derivation of Expressions Page for Pressure Distribution

Symbols	Description	Dimension
a	Percentage novement of a free segment	Nondimensional
	based on the total velocity at its	
	control point	
${ }^{\text {a }}$ i	Fourier coefficierts	Nondimensionel
ε_{ℓ}	Leading-edge bcindary condition term	Nondimersiona
\vec{a}	$\left(x_{1}-x\right) \vec{i}+\left(y_{1}-y\right) \vec{j}+\left(z_{1}-z\right) \vec{k}$	m (ft)
\vec{a}^{\prime}	$\left(x_{1}-x\right) \vec{i}+E\left(y_{1}-y\right) \vec{j}+E\left(z_{1}-z\right) \vec{k}$	$m(f t)$
$A_{i j}$	Induced downwash coefficient due to wing	Nondimersionai
\bar{A}	$\|\vec{l} \cdot\|^{2}$	$\mathrm{m}^{2}\left(\mathrm{ft} \mathrm{t}^{2}\right)$
b	Wing span	m (ft)
\vec{t}	$\left(x_{2}-x\right) \vec{i}+\left(y_{2}-y\right) \vec{j}+\left(z_{2}-z\right) \vec{k}$	m (ft)
\vec{b}^{\prime}	$\left(x_{2}-x\right) \vec{i}+B\left(y_{2}-y\right) \vec{j}+B\left(z_{2}-z\right) \vec{k}$	$m(f t)$
$I_{i k}$	Induced downash coefficient due tc	$m^{-1}\left(f t^{-1}\right)$
	leading-edge vortex system	
E	$2\left(\vec{a}^{\prime} \cdot \vec{l}^{\prime}\right)$	$\mathrm{m}^{2}\left(\mathrm{ft} \mathrm{t}^{2}\right)$
c	Lccal chord	m (ft)
\bar{C}	$\|\vec{a} \cdot\|^{2}$	$\mathrm{m}^{2}\left(\mathrm{ft}{ }^{2}\right)$
$\overline{\bar{C}}$	Mean geometric chord	- (ft$)$
c_{m}	Sectionel pitching moment coefficient	Nondimensiona
c_{n}	Sectional normal force coefficient	Nondinensional
c_{t}	Secticnal leading-edge thrust	Nondimensional
	ccefficient	

Symbols	Description	Dimension
C_{L}	Total lift coefficient	Fondimensional
${ }^{\text {c }}$ M	Totel pitching moment coefficient	Nondimensional
C_{N}	Total normal force coefficient	Nondimensionsl
c_{F}	Pressure coefficiert	Nondimensional
C_{R}	Root chord	$m(\mathrm{ft})$
C_{T}	Total leading-edge thrust coefficient	Nondimersional
$C_{D_{\varepsilon}}$	Induced drag coefficient due to normen force coefficient	Nondimensiona
${ }^{\Sigma_{L}}$	Induced drag coefficient due tc leading-edge thrust coefficient	Nondimensional
${ }^{C^{\text {i }}}$	Total incuced drag coefficient	Nondimensional
$c_{L_{L}}$	Lift coefficiert due to norral force coefficient	Fondimersionel
${ }^{L_{L}}$	Lift coefficient due to leacingedge thrust coefficient	Nondimensional
5	Force	N (16)
\vec{i}	$\frac{\vec{a} \times \vec{\ell}}{\left\|\vec{a}^{\prime} \times \vec{\ell}\right\|^{2}}\left\{\frac{\vec{b}{ }^{\prime}}{\|\vec{b}\|}-\frac{\vec{a}^{\prime}}{\left\|\vec{a}^{\prime}\right\|}\right\} \cdot \vec{\ell}^{\prime}$	$\mathrm{m}^{-1}\left(\mathrm{ft}^{-1}\right)$
${ }_{\text {c }}^{\text {c }}$	$\int_{x}^{\infty}, \frac{\left(\vec{R}_{i}-\vec{R}\right) \times d \vec{d}}{R_{G}^{3}}$	$\mathrm{I}^{-1}\left(\mathrm{ft}^{-1}\right)$
\because	Force jer unit dynamic pressure per unit iength	[r (ft)
$\overrightarrow{2}$	$\left(x_{2}-x_{1}\right) \vec{i}+\left(y_{2}-y_{1}\right) \vec{j}+\left(z_{2}-z_{1}\right) \vec{k}$	m (ft)
\vec{Q}	$\left(x_{2}-x_{1}\right) \vec{i}+E\left(y_{2}-y_{1}\right) \vec{j}+E\left(z_{2}-z_{1}\right) \vec{k}$	m. (ft)

Symbols	Description	Dimension
M	Number of spanwise strips plus one	
M_{∞}	Free stream Mach number	Nondimensional
N	Number of bound elements	
》a	$N(M-1)$	
To	$(\mathrm{M}-1)$	
ide	NM	
q	Dynamic pressure, ($\rho \mathrm{V}_{\infty}^{2} / 2$)	$N / m^{2}\left(1 b / f t^{2}\right)$
\vec{q}	Induced velocity vector due to wing	$\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$
R_{6}	$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\beta^{2}\left(y_{2}-y_{1}\right)^{2}+\beta^{2}\left(z_{2}-z_{1}\right)^{2}}$	m (ft)
\vec{R}	$x \vec{i}+y \vec{j}+z \vec{k}$	$m(f t)$
\vec{R}^{\prime}	$x \vec{i}+E y \vec{j}+g_{z} \vec{k}$	$m(f t)$
\vec{R}_{ℓ}	$\xi \vec{i}+\eta \vec{j}+\zeta \vec{k}$	m (ft)
$\stackrel{\rightharpoonup}{R}_{\ell}^{\prime}$	$\xi \vec{i}+B{ }^{\text {a }}+B 5 \vec{k}$	m ($f t$)
S	Reference wing eree	$m^{2}\left(f t^{2}\right)$
u, v, w	Velocity components	$\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$
V_{∞}	Freestream velocity	If/sec (ft/sec)
\vec{V}	Induced velocity vector due to	$\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$
	leading-edge vortex syster.	
w^{\prime}	Induced normal wash	m/sec ($\mathrm{ft} / \mathrm{sec}$)
x, y, z	Wing rectangular coordinate system	m ($f t$)
	with x in the streamvise airection	
	and y to the right	

Symbols	Description	Dimension
$\mathrm{Z}_{\text {min }}$	Minimum vertical distance of a vortex secment from the wind plane	L: (ft)
Greek		
α	Angle of attack	rad
E	$\sqrt{1-M_{\infty}^{2}}$	Nondimensional
γ	Vortex density referred to freestream velocity	
Γ	Concentrated vortex strengtr based on free strean velocity	m (ft)
${ }_{\Delta C}{ }_{p}$	Differential pressure coefficient, $\left(C_{p_{\text {lower }}}-C_{p_{\text {upper }}}\right)$	Noncimensional
θ	Chordwise anguiar distance	rac
A	Sweep angle of leading-edge	rad
ρ	Fluid dersity	$\mathrm{kg} / \mathrm{m}^{3}$ (slugs $/ \mathrm{ft}^{3}$)
4	Spanwise angular distance	rad
ψ	Sweep argle of leading-edge vortex element	rac
ξ, Π, ζ	Integration variables in cartesian system	II (ft)

Subscripts

$=\quad$ The first endpoint of a vortex element
2 The second endpoint of a vortex element
y bounc element

```
c
O. Control point
```

Symbols	Description
i	Chordwise bound element number
j	Spanwise strip rumber
k	Chordwise bound elenent number
\mathcal{L}	Leading-edge
ℓe	Leading-edge vortex element
\mathcal{L}	Left trailirg leg
R	Right trailing leg
t	Trailing-edge
J	Chordwise trailing vortices

1. Introduction

In recent years increasingly complex wing planforms, which are efficient over a large flight envelope, are being used in the aircraft industry. An efficient high-subsonic or supersonic cruise aircraft must be designed to work efficiently even for off-design performance points, such as, landing and take-off. One way of designing such an aircraft is to have fully attached flow at cruise and controlled leacing-edge separation at landing- and take-off-conditions (ref. 1). A significant amount of vortex lift can be generated at high angles of attack by leading-edge vortex flow. fienderson (ref. 1) pointed out that at high angles of attack highly swept-back wings having sharp leading-edges have low amount of leading-edge suction (essentially zero) and generate large amount of vortex lift. However, the leading-edge suction increases as the sweep is decreased or leadingede radii are increased. The structural considerations restrict the leading-edges to be of finite radii. In these cases the lift data lies betweec potential and potential plus vortex estimates (zero suction). At present, there exists no theoretical method which can rredict aerodynamic characteristics of wings having partial leadingedge suction and vortex flow as mentioned above. A theoretical method is presented here to predict aerodynamic characteristics of wings under such conditions.

A theoretical $I \in t h o d$ for cases with non-zero leeding-edge suction and partial leading-edge separation should also be applicable to cases with complete leading-edge separation. Due to lack of data with partial leading-edge separation, the present method hes been extensively corepared with other theoretical methods and available data only for cases with complete leading-edge separation. Thus, a survey of literature on completely separated leading-edge vortex flow seems pertinert.

Legendre (ref. 2) wae the first one who attemnted to solve the leading-edge separation roblem. He assuned that rolled up vortex sheets over the wing can be replaced by a pair of concentrated vortices (fig. l). In this model the flow tangency boundary condition over the wing was satisfied alonj with the leadine-edge Kutta condition, The flow was assumed to be conical so that conformal mapping could be used. Upon the instigation by Adams (ref. 3), Legendre (ref. 4) revised his rciel. He reported that in his first model he haci assumed a cut icining the two vortices. Ir enother form of his model, Legendre ircluded a cut betweer the vortices and their respective leading-edges to account for the feeding sheets. Adars pointed out that in ti.e tirst model of Lerendre the lift was maltivalued because the rejion was no loneer simply connected and in the second one the pressure difference was allowed across the sheet. Based on the suggestions of Edwards (ref. 5), Erown and Michael (ref. E) modifiec Legendre's slerder body model $b y$ using feeding cuts, which connectec the Iine virtices to the wing leading-edges (fig. 2). This vortex system of
concentrated line vortex and feeding cuts was required to satisfy the force free condition. The leading-edge Kutta condition and flow tangency bcurdary concition on the wing were also satisfied. Mangler and Smith (ref. 7) proposed a somewhat more realistic model than that of Erown and Michael, but still used slender body theory in their investigation. They used a continuous model of the separated vortex sheet along with a concentrated core (fig. 3). The shape and strength of the vortex sheet and the concentrated line vortex were determined by satisfying the flow targency condition on the wing and the pressure continuity condition across the seperated vortex sheet. Later, Snith (ref. 8) used segmented feeding vortex sheet with consicierable improvement in numerical procedure (fig. L), largely due zo advent of greater computing power. The above modei inas modified further for thick wings (Smith, ref. O). The main stortcoming of all these ricdels described so far is the assumption of conical plow.

Gersten (ref. IO) extended Bollay's vortex model (ref. 1l), which was for rectargular wires with wing tip separetion, to arbitrarily shaped wings of small aspect ratio with leading-edge sefaretion (fig. 5). In this model the vortices came off wing edges at an angle $a / 2$ to the wing plane. The wing was replaced by infiritesinal lifting elements and the strength of vortices was assumed to vary along the spar. A.t this point the flow tangency condition on the wing was satisfied tc find the wing characteristics. Garner and Lehrian (ref. 12) followed Gersten's approach by using Multhopp's lifting surface theory (ref. 13) to represent the wing. Both of these models
are very crude and give only total characteristics of the wing; i.e., pressure distributions are not calculated.

Sacks, et al (ref. 14) a日sumed aerodynamic characteristics (lift and pitching momert) to be composed of two components - the linear anc nori-linear components. The linear component was calculated by using the integral method of Lawrence (ref. 15), while the non-linear corponent was caiculated by assuming that vortex pairs were shed just outside the wing leading-edge with shedding rate determined by either an empirical method or slender wing theory. The location of each vcrtex pair was determined ty satisfying the force free condition at the vortices.

Nangia and Hencock (ref. lG) extended Brown and Micheei's model (ref. 6) to non-slender wings. In their model the wing flanform was represented by bouna- and trailing-vorticity distributions. The wake behind the trailing-edge was free to move outboard ard the leading-edge separation was represented by two isolated vortices, which were conrected to the leading-edge by cuts (as ir Brown and Michacl). The Kutta condition was satisfied along the leading- and trailing-edges and the flow tangency condition was satisfied on the wing surface. Zero force condition was satisfied on the isolated vortices and the cuts at selected collocation points. rithough this method was not restricted to slender winge, the leading-edge flow model was crude.

Polhamus (ref. 17 and 18) used leading-edge suction analogy to predict lift coefficients for various simple planforms, such as, arrow-, diamond- and delta-wings. It was essumed that when the complete flow reattachment cccurs inboard of the leading-edge vortices, the total lift equals the sum of the potential and vortex lift. These components of lift were calculated by using a modified form of Multhopp's lifting surface theory (ref. 19). The vortex lift was assumed to be equal in magnitude to the potential flow leading-edge suction force lost due tc separation. In its original form this method did not celculate the local distribution of lift and so the pitching moments were not predicted. Snyder and Lamar (ref. 20) used this method to predict the longitudinal load distribution and pitching moment for delta wings.

Mook and Maddox (ref. 21) modeled the leading-edge vortex system by finite vortex elements coming off the leading-edge (fig. 6). This network of vortex elements was superimposed on the vortex-lattice used by Giesing, et al (ref. 22). The solution is obtained in an iterative marner by satisfying the flow tangency boundary cordition on the wing surface, approximately satisfying leading- and trailing-edge Kutta conditions, and satisfying force free conditions on the vortex elements over the wing surface. The force free condition was not satisfied on the wake behind the trailing-edge. Kandil, et ail (ref. 23) modeled the flok in a manner similar to that of Mook and Maddox (ref. 21) and extended it to wing-tip seperation also. Kandil, et al fcilicutd belotstriovikif (ref. 24) for the representation of the
wing surface. In this model the bound elements of the vortex-iattice were unswept, and the wake behind the trailing-edge and the vortex elements comine from wing-tip were force free. Apparently, this methoc hes been restricted to an angle of attack of 20 degrees (ref. 25). Kandil, et al (ref. 26) extended their model to calculate the locetion and strength of a concentrated core, which they also used for corvereence criteria. Rehbach (ref. 27) al so followed Belotserkovskii to model wing-tif separation and the arproach was similar to that of Kardil, et al (ref. 23). Eowever, he solved the leading-edge sefaration problem differently (ref. 28). The process was started by finding a converged solution ior a rectangular wing (fig. 7). The leading-edge span of the rectangular wing was decreased by a smail amount, while the trailing-ejge span was hept constant. A new converged solution for this wing wes ctained. This process was refeated untii the planform reduced to a delte wing. The deficiency of these methods is that the leacing-edge Kutta sondition is crily eyproximately satisfied. The iteration process of Retbach couid also be quite time consuming.

Nathmen (ref. 29) presented two models of leading-edge separation; $\therefore \therefore$ EXPi wase model and the free make rolel (fies. S). In both models the wing was represented by panels with constant strength doublet distritution, beinf equivalent to closed vortex filaments on the boundary of the panels. In the fixed wake model the separated sheet war modeled hr placinf a sorin of planar boxes along the leading-edee which extended
to the vortex core predicted analytically by 3row and Michael (ref. 6). The doublet strengths were obtained by satisfying flow tangency boundary conditions only. In the free wake model the separated vcrtex sheet was represented by discrete vortices attached to the ieading-edge. These vortices were aligred along the locel velocity vector to be fcrce free. The wake behind the trailing-edge was force free only to a certain extent. The fixea wake model is ton cride, whereas no definite convergence criteria hcs been estatlisteci for the free wake model.

The nost sophisticated and realistic model of ail leading-edge separation models has been due to Brune, et al (ref. 30). In this rodel the wing and the separated vortex sheet were represented by Fiecewise continuous doublet diatributions. Ihe separatec vortex sheet was connected to a concentrated core by a contirucus fed sheet (fie. y). The solution was oftained in an iteretive marner by setisfyire the Kutie corcition elong all eciges, flow targency koundary conaition on the wing, ard the force free condition on the separatec vortex skeft and vake behind the trailing-edge. This model has aiso teen exterded to thick enc cembered wings. The cirawbacks of this Lociei are that it cannot preaict lift correctly at small argies of atteck for moderate to low aspect retio wings, takes too much computer time to get a converged solution and needs large corputer redory space.

All methods menticned above celculate only the wing characteristics for complete loss of leading-edge suction. A method is ceveloped here for partial leading-edge flow separation with non-zero leading-edge suction. The wing boundary condition is formulated by the Quasi Vortex Lattice method (QVLM) of Lan (ref. 31). The advantage of this method is that the leading-edge boundary condition can be exactly satisfied. The leading-edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at their mid-points to satisfy the force free condition. The wake kehind the trailing-edge is aiso force free. The flow tangency boundary condition is satisfied on the wing, inciuding the leading- and trajling-edges. Due to the non-linear nature of the problem, the problem is solved in an iterative mamer. Thie to nonavailebility of any data with partial leading-edge sefaration, the wetkod will be compared orly with other methods (ref. $3 \hat{c}$ and 33) and experinertal dita (ref. 34 thru 40) for complete leading-edge separation. The basic assumption in the present theory is that the Prandtl-Glauert equation is applicable. The thickness ard fuselage effects are ignored.

Thapter 2 preserts the theoretical method. In Chagter 3, numerical results are presented and discussed. Conclusions and recomendations are made in Chapter 4.

2. Theoretical Method

2.1 Problem Definition

In steady symetric flight at a high angle of attack, the flow over a thin low aspect ratio highly sweptback wing separates along the leading-edge and the tips. In the following, only delta wings will be considered. The wing can be represented by a bound vortex sheet, across which exists a pressure difference, and the separated flow along leading-edges by force free vortex sheets, across which there is no pressure difference. In the present method, the Quasi-Vortex-Lattice method (ref. 31) is used to simplify the induced velocity expressions due to the bound vortex sheet and discrete force free vortex elements for separated vortex sheets.

The following boundary concitions are imposed on the flow model:
a. The flow must be tangential to the wing camber surface.
b. The leading-edge boundary condition and trailing-edge Kutta condition are to be satisfied.
c. The vortex elements over the wing and wake behind the trailing-edge are force free.

This is a non-linear problem because the strecgthe $i f$ the wing bound vortices and free vortices, and the locations of the free vortex elements are urknown. Thus, the problem is solved by ar iterative method.

2.2 Mcdel Geometry

The origin of the rectangular coordinate syster. is at the wing apex. 'The wing lies in the $x-y$ plane and the x-axis is taken along the wing center-line. The wing span is given by b and the surface area by ε.

2.2.1 Wirg Geometry

The location of kound- ard trailing-vortex elements for a typicai cest are shown in figure 10 , a detailed descriftion of which is given in section 2.3. The x-locetion of bound elemerts is given ty the cosine law and is illustrated in figure 10.

$$
\begin{align*}
& x_{i}=x_{l}+\frac{c}{2}\left(2-\operatorname{ccs}\left(\frac{2 i-1}{2 i} T\right)\right), \tag{2.1}\\
& i=1,2,-\cdots
\end{align*}
$$

where x_{l} is the leading-edge x-coordinate, C is the chord and I is the rimber of bcurd elements in a chorcirise direction. The spantise location of trailirg elements is given ky,

$$
\begin{align*}
& y_{j}=\frac{b}{4}\left(1-\cos \left(\frac{2 j-1}{2 M} \pi\right)\right), \tag{2.2}\\
& j=1,2,-\cdots M
\end{align*}
$$

where b is the span and M is the number of legs of trailing vorticity, which is one higher than the number of spanwise strips of bound elements. The locations of contrcl points are given by,

$$
\begin{align*}
& x_{c p_{k}}=x_{\ell}+\frac{c}{2}\left(1-\operatorname{Cos}\left(\frac{\pi k}{N}\right)\right) \tag{2.3}\\
& k=0,1,2,--N \\
& y_{c p_{j}}=\frac{b}{4}\left(1-\operatorname{Cos}\left(\frac{\pi j}{M}\right)\right), \tag{2.4}\\
& j=1,2,--(M-1)
\end{align*}
$$

where $x_{\ell j}$ and c_{j} are the leading-edge x-coordinate and chord at $y_{c p_{j}}$ respectively.
2.2.2 Leading-Edge Vortex System Georetry

The leading-edge vortex system is superimposed on the regular quasi-vortex-lattice grid. A typical vortex element is shown by points A through J in figure ll. These points are connected by a series of short straight segments. The initial location of these segments is shown by dashed lines and final location by solid lines. These segments have the following characteristics:
a. Points A through E lie along a wing trailing vortex element. Initially point A is one root chord away from the trailingedge in the downstream direction and the line segnents between A and D are parallel to the axis of symetry. The line segments between points A and B are of equal length. In the final converged position these segments are aiigned in the directicn of the local velocity vector. The segments $B-C$ and $C-D$ are $0.1 C_{R}$ long. $B-C$ is allowed to move only in the verticel direction whereas C-D is fixed in the wing plane because flow is tangential to the trailing-edge. Segment D-E is also fixed in the wing plane.
b. Points E, F, G and F also lie in the wing plane. The location of segment $E-F$ is ahead of the wing first bound eiement and is giver by,

$$
\begin{align*}
& x_{E}=x_{Q_{F}}+\frac{c_{E}}{2}\left(1-\cos \left(\frac{\pi}{2(N+1)}\right)\right) \tag{2.5a}\\
& x_{F}=x_{i_{F}}+\frac{c_{F}}{2}\left(1-\cos \left(\frac{\pi}{2(N+I)}\right)\right) \tag{2.5b}
\end{align*}
$$

where the subscripts E and F refer to the points under consideration. The above two equations are similar to equation (2.1). It is to be noted that segment E-F is located at the first bcund element for a grid of ($N+1$) bound elements in a chordwise direction. The segments F-G and $G-H$ are of the same length and point G lies on the
leading-edge. The segment $G-H$ is fixed in the wing plane due to the leading-edge boundary condition.
c. The initial location of point I is given by,

$$
\begin{equation*}
x_{I}=x_{F} \tag{2.68}
\end{equation*}
$$

or $z_{I}=0.1 C_{R} \tan \alpha \quad$ for $\alpha \geq 15^{\circ}$

$$
\begin{equation*}
y_{I}=y_{F} \tag{2.6c}
\end{equation*}
$$

$$
\begin{equation*}
z_{I}=0.1 C_{R} \tan (22.5-0.5 \alpha) \text { for } \alpha \leq 15^{\circ} \tag{2.6c}
\end{equation*}
$$

$$
\begin{equation*}
\text { for } \alpha \geq 15^{\circ} \tag{2.6~d}
\end{equation*}
$$

where C_{R} is the root chord and α is the angie of attack. Initially point J is one roct chord away from the trailing-edge. The segments between point I and J are of equal length and lie in a plane parallel to $x-z$ plane. These segments are approximetely at a height of $0.1 C_{R}$ above the wing plane (see Chapter 2.6). In the final converged position all the segmerts between points H ard J are adigned in the direction of the local velocity vector.
d. The semi-infinite segments from points A to infinity and J tc infinity are straight end are parallel to the undisturbed free-stream direction.

2.3 Induced Velocity Due to jing

In the quasi-vortex-lattice method (ref. 31), for the purpose of satisfying wing boundary (tengency) condition, the continuous vortex distribution over the wing is replaced by a quasi-continuous one, being continuous chordwise but stepwise constant in the spanwise direction. Thus, the wire sirfece car be diviced into a number c. vortex strips with the assccietė treiling vortices (fig. lo). In ery strip, consider a vortex elemert $\gamma d x$ with an arbitrary direction \vec{l} (fig. 12). The induced velccity due tc all bound elements in ith strip is given by (see Appendix A),

$$
\begin{equation*}
\vec{q}_{i_{2}}(\vec{R})=\frac{\beta^{2}}{4 \pi} \int_{x_{l}}^{x_{t}} \gamma\left(x^{\prime}\right)\left(\frac{\vec{e} \times \vec{l}}{\left.\right|_{E^{\prime}} \times\left.\vec{l}^{\prime}\right|^{2}}\left(\frac{\vec{b}{ }^{\prime}}{|\vec{b}|}-\frac{\vec{a}^{\prime}}{\left|\vec{E}^{\prime}\right|}\right\} \cdot \vec{l}^{\prime}\right) d x^{\prime} \tag{2.7}
\end{equation*}
$$

and due to the asscciated trailing vortices by (ref. 31),

$$
\begin{equation*}
\vec{q}_{i_{2}}(\vec{R})=\frac{\beta^{2}}{4 \pi} \int_{y_{l}}^{x_{t}} r\left(x^{\prime}\right)\left(x_{x^{\prime}}^{\infty} \frac{\left(\vec{R}_{i}-\vec{R}\right) x d \vec{l}}{R_{2}^{3}}\right) \quad d x^{\prime} \tag{2.8}
\end{equation*}
$$

The transformation, $x^{\prime}=x_{i}+\frac{c(\gamma)}{i}(1-\operatorname{Cos} \theta)$, reduces equations (2.7) and (2.8) to,

$$
\begin{equation*}
\overrightarrow{\mathrm{G}}_{\mathrm{i}}(\vec{R})=\frac{B^{2} c(y)}{\theta \pi} \int_{0}^{\pi} \vec{G}_{1}(\theta ; \gamma(\theta) \sin \theta d \theta \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{q}_{i_{2}}(\vec{A})=\frac{B^{2} c(y)}{8 \pi} \int_{0}^{\pi} \vec{G}_{2}(\theta) \gamma(\theta) \sin \theta d \theta \tag{2.10}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \vec{G}_{1}(\theta)=\frac{\vec{a} \times \vec{l}}{\left|\vec{a}^{\prime} \times \vec{l} \cdot\right|^{2}}\left\{\frac{\vec{b}^{\prime}}{|\vec{b}|}-\frac{\vec{a}^{\prime}}{\left|\vec{a}^{\prime}\right|}\right\} \cdot \frac{t}{l} \\
& \vec{G}_{2}(\theta)=\int_{x^{\prime}}^{\infty} \frac{\left(\vec{R}_{i}-\vec{R}\right) \times d \vec{l}}{R_{B}^{2}}
\end{aligned}
$$

and $c(y)=x_{t}-x_{l} \cdot \vec{a}, \vec{b}$, etc. are defined in the List uf Byluicio. The tote induced velocity due to the ith strip of vortex distribution is given by,

$$
\begin{align*}
{\overrightarrow{q_{i}}}_{i}(\vec{R})= & \frac{\beta^{2} c(y)}{8 \pi} \int_{0}^{\pi} \vec{G}_{1}(\theta) \gamma(\theta) \sin \theta d \theta \\
& +\frac{\beta^{2} c(y)}{8 \pi} \int_{0}^{\pi} \vec{G}_{2}^{\prime}(\theta) \gamma(\theta) \sin \theta d \theta \\
& -\frac{\beta^{2} c(y)}{8 \pi} \int_{0}^{\pi} \vec{G}_{2}^{\prime \prime}(\theta) \gamma(\theta) \sin \theta d \theta \tag{2.11}
\end{align*}
$$

where the first term is due to bound elements, second due to left leg of trailing elements and third due to the right leg of trailing elements. The above integrals are reduced to finite sums through the midpoint trapezoidal rule (see ref. 31):

$$
\begin{equation*}
\vec{q}_{i}(\vec{P})=\frac{\beta^{2} c(y)}{8 N} \sum_{k=1}^{N}\left(\vec{G}_{1_{k}}+\vec{G}_{2_{k}}-\vec{G}_{2_{k}}^{\prime \prime}\right) \gamma_{k} \sin \theta_{k} \tag{2.12}
\end{equation*}
$$

where $\theta_{k}=\frac{(2 k-1)}{2 N} \pi$ and locations of bound elements are given by,

$$
\begin{align*}
& x_{1_{k}}=x_{\ell_{1}}+c_{1} \xi_{k} \tag{2.13e}\\
& x_{2_{k}}=x_{\ell_{2}}+c_{2} \xi_{k} \tag{2.13k}\\
& \xi_{k}=\frac{1}{2}\left[I-\operatorname{Cos}\left(\frac{2 k-1}{2 N} \pi\right)\right], k=1,2,-\cdots, N \tag{2.13c}\\
& x_{\ell}=\text { the leading edge } x \text {-coordinate at } y_{1} \text { (left leg) } \\
& x_{\ell_{2}}=\text { the leading edge } x \text {-ccordinate at } y_{2} \text { (right leg) } \\
& c_{1}=\text { chord length at } y_{1} \\
& c_{2}=\text { chord length at } y_{2}
\end{align*}
$$

The control points in the chordwise direction ere chosen suct that,

$$
\begin{equation*}
x_{i}=x_{\ell}+\frac{c}{2}\left(1-\cos \frac{i \pi}{N}\right), i=1,2,-\cdots N \tag{2.14}
\end{equation*}
$$

where x_{ℓ} is the leading edge x-coordinate on the chorc c through the control point. The spanwise location of trailing vortices is given by,

$$
\begin{equation*}
y_{j}=\frac{b}{L}\left(1-\cos \left(\frac{2 j-1}{2!} \pi\right)\right), j=2,2,-\cdots M \tag{2.15}
\end{equation*}
$$

and control points by,

$$
\begin{equation*}
y_{i}=\frac{b}{4}\left(1-\cos \left(\frac{i \pi}{1}\right)\right), i=1,2, \cdots(M-1) \tag{2.16}
\end{equation*}
$$

where b is the span and M is the total number of trailing vortices which is one more than spanwise strips. The geometry associated with
equations (2.13) - (2.26) is based on the semicircle method and is illustrated in figure 10.

Thus, induced velocity due to all vortex strips of the wing can be written as,

$$
\begin{equation*}
\vec{q}(\vec{R})=\sum_{i=1}^{M-1} \vec{q}_{i}(\vec{R}) \tag{2.17}
\end{equation*}
$$

2.4 Induced Velocity Due to Leadigg-Edge Vortex System

The leading-edge vortex system, as described in Chapter 2.2.2, consists of " $M-1$ " elements. Each eleant may have different number of small vortex segments. Assume that it. set has L small segments. The induced velocity at a point (x, y, z) due to $j t h$ segment of th element is given by (Appendix A),

$$
\begin{equation*}
\vec{V}_{i_{j}}(\vec{R})=\frac{B^{2} \Gamma_{i}}{4 \pi} \frac{\vec{a} \times \vec{l}}{\left|\vec{a}^{\prime} \times \vec{l}^{\prime}\right|^{2}}\left\{\frac{\vec{b},}{\left|\vec{b}{ }^{\prime}\right|}-\frac{\vec{a}^{\prime}}{\left|\vec{a}^{\prime}\right|}\right\} \cdot \overrightarrow{L^{\prime}} \tag{2.18}
\end{equation*}
$$

where

$$
\begin{aligned}
& \vec{R}=x \vec{i}+y_{i}+z \vec{k} \\
& \vec{a}=\left(x_{j}-x\right) \vec{i}+\left(y_{j}-y\right) \vec{j}+\left(z_{j}-z_{j}\right) \vec{k} \\
& \vec{k}=\left(x_{j+1}-x\right) \vec{i}+\left(y_{j+1}-y\right) \vec{j}+\left(z_{j+1}-z\right) \vec{k} \\
& \vec{Z}=\left(x_{j+i}-x_{j}\right) \vec{i}+\left(y_{j+1}-y_{j}\right) \vec{j}+\left(z_{j+1}-z_{j}\right) \vec{k}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{a}^{\prime}=\left(x_{j}-x\right) \vec{i}+\beta\left(y_{j}-y\right) \vec{j}+\beta\left(z_{j}-z\right) \vec{k} \\
& \vec{b}^{\prime}=\left(x_{j+1}-x\right) \vec{i}+\beta\left(y_{j+1}-y\right) \vec{j}+\beta\left(z_{j+1}-z\right) \vec{k} \\
& \vec{Z}^{\prime}=\left(x_{j+1}-x_{j}\right) \vec{i}+\beta\left(y_{j+1}-y_{j}\right) \vec{j}+\beta\left(z_{j+1}-z_{j}\right) \vec{k} \\
& \Gamma_{i}=\text { vortex strength of itr. set of segnents }
\end{aligned}
$$

The subscripts j and $j+1$ correspond to the end points of $j t h$ segment.

Now the induced velocity due to ith element can be written as,

$$
\begin{equation*}
\vec{V}_{i}(\overrightarrow{\mathrm{P}})=\sum_{i=1}^{i} \overrightarrow{\mathrm{~V}}_{i_{j}}(\overrightarrow{\mathrm{P}}) \tag{2.19}
\end{equation*}
$$

Therefore, the induced velocity due tc all elements is,

$$
\begin{equation*}
\vec{V}(\vec{R})=\sum_{i=1}^{M-1} \vec{V}_{i}(\vec{R}) \tag{2.20}
\end{equation*}
$$

2.5 Eoundary Conditions

The two basic boundary conditions to be satisfied in the model are,
a. The flow must be taricential to the wing camber surface.
b. The vortex elements above the wing and ir. the wake behind the trailing-edge must be force free.

2.5.1 Formulation Cf Wing Boundary Condition

The bound elements and the correspording control points of the wing surface are numbered from the leading-edge to the trailing-edge and from the root to the tip. Thus, there are $\mathrm{Na}=\mathrm{N}(\mathrm{N}-\mathrm{I})$ bound elements and corresponding control points (see Chapter 2.2.1). Similarly, the vortex elements and the corresponding control points in the ieacing-edge vortex system are numbered from the root to the tip. There are $N b=(M-1)$ leading-edge vortex elements being equal to the number of wing vortex strips. Thus, there must be $\mathrm{Nc}=\mathrm{Ne}+\mathrm{Nb}$ control points on the wing surface. The flow tangency conditicn can be written as,
where $\Lambda_{i j}$ is the induced downash at itk control point of wing due to a unit horseshoe vortex density at j; $B_{i k}$ the induced downash at ith control point due to kth leading-edge vortex element of unit strength; Y_{j} the vortex density of the J th bound element; Γ_{k} the strength. of kth leading-edge vortex element, $\left(\frac{d z}{d x}\right)_{i}$ the camber slope at the ith control point and α the angle of attack. According to equations (52) and (53) of ref. 31, the leading-edge thrust coefficient is related to the normalwash on the leading edge by the following
equation:

$$
\begin{equation*}
a_{\ell_{k}}=\text { induced normalwask }-\left(\frac{\dot{d z}}{\dot{d x}}\right)_{k}+\sin \alpha \tag{2.22}
\end{equation*}
$$

which ieads to the last expression on the right hand side of equation (2.21). In the above expression, a_{2} is defined as:

$$
\begin{equation*}
\mathrm{a}_{\ell_{k}}=N \sqrt{\tan ^{2} \Lambda+\beta^{2}}\left(\frac{2 c_{t_{k}} \cos \Lambda}{\pi \sqrt{1-M_{\infty}^{2} \cos ^{2} \Lambda}}\right)^{1 / 2} \tag{2.23}
\end{equation*}
$$

$N=$ Number of chordwise vortex elements

$$
\Lambda=\text { Leading-edge sweep angle }
$$

$N_{\infty}=$ Free strean Nack number
$E=\sqrt{1-M_{\infty}^{2}}$
$c_{t_{k}}=$ Sectionai ieacing-edge thrust coefficient of the kth strip For complete leacire-ejé separation cases the sectionai leaing-ecige suction is zero erd so is $a_{\ell_{k}}$.

2.5.2 Formulatior. Of Force Free Condition Of Free Eierents

The vortex segmenta above the wing siaface and the wire are to be aigned ir the direction of local velocity vectcr calculated at their mid-points. Consider itr segment of a vortex eiement. The coordinates of its end forrts are giver. $b_{j}\left(x_{i}, y_{i}, z_{i}\right)$ and $\left(x_{i+1}, y_{i+1}, z_{i+1}\right)$. Assume that the velocity at the rid-fcint of this segrent at a given iterative stef is given by,

$$
(u \vec{i}+v \vec{j}+w \vec{k})
$$

Then, the new location of the (i +1)th end point will be,

$$
\begin{align*}
& x_{i+1_{N}}=x_{i}+\frac{u}{U} \Delta s \tag{2.24a}\\
& y_{i+1_{N}}=y_{i}+\frac{v}{U} \Delta s \tag{2.24b}\\
& z_{i+l_{N}}=z_{i}+\frac{w}{U} \Delta s \tag{2.24c}
\end{align*}
$$

where

$$
u=\sqrt{u^{2}+v^{2}+w^{2}}
$$

and

$$
\Delta s=\sqrt{\left(x_{i+1}-x_{i}\right)^{2}+\left(y_{i+1}-y_{i}\right)^{2}+\left(z_{i+1}-z_{i}\right)^{2}}
$$

Before equations (2.21) are used, the following points should be considered:
a. The length of each segment is to be preserved.
b. The fren vortex segments above the wing should not $=0 \mathrm{me}$ toc close to the wing surface to ayoid numerical difficulty in the present inviscia theory.
c. The adjustment of the location of each segment to satisfy the force free condition should be such that it does not result in numerical fluctuations (see Chapter 2.6).

Based on the acove consideration, equations (2.24) will be modified as follows.

Consider the same ith segment. If this segment moves a-percent
only according to the velocity corputed at its mid-point, then equations (2.24) can be modified to be,

$$
\begin{align*}
& \Delta y_{i}=\frac{a v}{u} L s+(1-a)\left(y_{i+}-\because_{i}\right. \tag{2.25a}\\
& \Delta z_{N}=\frac{a w}{U} \Delta s+(I-a)\left(z_{i+1}-z_{i}\right) \tag{2.25b}\\
& \Delta x_{N}=\sqrt{\Delta s^{2}-\Delta y_{N}^{2}-\Delta z_{N}^{2}} \tag{2.25c}
\end{align*}
$$

It follows that,

$$
\begin{align*}
& x_{i+i}=x_{i}+\Delta x_{i} \tag{2.26a}\\
& y_{i+i}=y_{i}+\Delta y_{i v} \tag{26b}\\
& z_{i+1}=z_{i}+\Delta z_{i j} \tag{2.26c}
\end{align*}
$$

Let $Z_{\min }$ be ti:e minimum vertical distance ary vortex segnent is alowed tc come close to the wing surface. If $z_{i+i_{N}}$ is less than $Z_{\text {mir. }}$. it is then set equel to $Z_{m i n}$ and Δz_{N} is recalculated by using,

$$
\begin{equation*}
\Delta z_{N}=z_{\min }-z_{i} \tag{2.27}
\end{equation*}
$$

This value of Δz_{N} is used to calculate x_{i+1}.

2.6 Solution Procedure

The basic unknowns of the problem are the bound vortex density on the wing, and the strengths and the locations of the eiements of the leading-edge vortex system and the wake. The problem is nonLinear because the locations of the leading-edge vortex system and tixe wake are unknown a priori. Therefore, the problem will be solved by the iterative process described below;
a. Prescribe the vortex lattice for the wing surface, and the initial locations of the free elements over the wing and in the wake.
b. Ey satisfying the wing boundary condition, i.e. equation (2.21), obtain the bourd vortex density of the wing and the strengths of free elements.
c. Calculate all the aerodynamic characteristics.
d. Calculate the forces acting on the free elements over the wing surface.
e. Adjust the free elements of the leading-edge vortex system and the wake in the local velccity vector direction, as described in Chapter 2.5.2.
f. Repeat steps b through e until a converged solution is obtained.

The infial locations of the free vortex elements are assumed by letting them leave the leading-edge in the undisturbed free-stream direction up-to a height of about ter percent of the root chord
beyond which the elements are parallel to the wing plane. Initielly, all the elements of the wake lie in the plane of the wing. In the iteration process, the force free condition is satisfied on the free elements from the root to the tip in the dow-stream direction. A similar approach has been used by Butler and Hancock (ref. 41) with success for the wake problem. The elements over the wirg are adjusted before the elemerts of the wake. In the first iteration the segments over the wing are moved $10 C$ percent according to the velccity computed at their mici-foints. This movenent is gradualiy reducec in steps of 90, 80 anc 75 percent in the next three iteraticns, after which it remains at 75 yercent (see equations (2.25) and (2.26). . The segments in the wake are roved cnly 50 percent in each iteration. Thus, exact force free condition is not enforcec because whever ine iree elements cone close to each other they induce unreasorabiy ierge velocities because viscous effects are not included in the present theory. These large velccities ircrease the forces on the elemerts and irduce fluctuations in their locations.

The solution is assumed to have converged if in two consecutive iterations the difference betweer the total strengths of leading-edge free vortex elements is less than one percent ara the absolute force acting on the free elements is in the neighborbocd of a minimum. Thus, an exact force free condition is not enforced as discussed in the previous paragraph.

2.7 Aerodyamic Characteristics

The expressions for the evaluation of the pressure distribution are derived in Appendix B. They are obtained by applying the KuttaJoukowski trecrem to the vortex system on the wing.

The sectional normal force coefficient of jth strip is given by chordwise integration of the differential pressure coefficient:

$$
\begin{equation*}
c_{n_{j}}=\frac{1}{c_{j}} \int_{x_{\ell_{j}}}^{x_{j}} \Delta c_{p} d x \tag{2.28}
\end{equation*}
$$

where x_{ℓ} and x_{t} are the leading and trailing edge x-coordinates of the chord passing through the control points of the jth strip and c_{j} is the chord length. The transformation,

$$
\begin{equation*}
x=x_{\ell}+\frac{c_{1}}{2}(1-\cos \theta) \tag{2.29}
\end{equation*}
$$

reduces equatior (2.28) to:

$$
\begin{align*}
C_{r_{j}} & =\frac{1}{2} \int_{0}^{\pi} \Delta C_{p} \sin \theta d \theta \\
& \equiv \frac{\pi}{2(N+1)} \sum_{k=1}^{N+1} \Delta C_{p_{k}} \sin \theta_{k} \tag{2.30}
\end{align*}
$$

and

$$
\theta_{k}=\frac{(2 k-1)}{2(N+1)} \pi, k=1,2,--(N+1)
$$

Where the midpaint trapezoidal rule has been used to reduce the integral to a finite sum. Similarly, the sectional pitching moment coefficient for the j th strip about the y-axis is given by,

$$
\begin{align*}
c_{m_{j}} & =-\frac{1}{c_{j} \overline{\bar{c}}} \delta_{x_{\ell}}^{x_{j}} \Delta C_{p} x d x \\
& \cong-\frac{\pi}{2 \overline{\bar{C}}(N+1)} \sum_{k=1}^{N+1} \Delta C_{p_{k}}\left(x_{\ell j}+\frac{c_{j}}{2}\left(1-\cos \theta_{k}\right)\right) \sin \theta_{k} \tag{2.31}
\end{align*}
$$

where $\overline{\bar{C}}$ is the mean geometric chora.
According to equations (52) and (53) of ref. 31, the sectional leading edge thrust coefficient is give by:

$$
\begin{equation*}
c_{t_{j}}=\frac{\pi \sqrt{1-M_{\infty}^{2} \cos ^{2} \Lambda}\left(w_{j}-\left(\left(\frac{d z}{d x}\right)-\sin \alpha\right)\right)^{2}}{2 N^{2} \cos \Lambda\left(1-M_{\infty}^{2}+\tan ^{2} \Lambda\right)} \tag{2.32}
\end{equation*}
$$

where M_{∞} is the free strear lach number, A the sweep angle of the 2eacing-edge, and w_{j}^{\prime} and $\left(\frac{d z}{d x}\right)_{j}$ are the induced normalwash and slcpe of the wing surface at the leading-edge.

The normal force coefficient is obtgined ty integrating the sectional normal force coefficient across the spar:

$$
\begin{equation*}
c_{N}=\frac{1}{s} \int_{-\frac{b}{2}}^{\frac{b}{2}} c_{n} c d y \tag{2.33}
\end{equation*}
$$

where b is the span and S the wing area. By the transformation,

$$
\begin{equation*}
y=\frac{b}{4}(1-\cos \phi) \tag{2.34}
\end{equation*}
$$

equation (B.21) cen be reduced to,

$$
\begin{align*}
C_{N} & =\frac{b}{2 S} \int_{0}^{\pi} c_{n} c \sin \phi d \phi \\
& \cong \frac{b \pi}{2 S M} \sum_{i=1}^{M-1} c_{n_{i}} c_{i} \sin \phi_{i} \tag{2.3ラ}\\
\phi_{i} & =\frac{i}{M} \pi, i=1,2,-\cdots(M-1)
\end{align*}
$$

where ($M-1$) is the total number of sparwise strifs and the regular trapezoidal rule hes been used.

Similarly the pitching monent and leading-edge thrast coefficients are given by;

ORIGNAL PAGE IS

$$
\begin{align*}
& C_{M}=\frac{k \pi}{2 S M} \sum_{i=1}^{M-1} c_{m_{i}} c_{i} \sin \phi_{i} \tag{2.36}\\
& C_{T}=\frac{b \pi}{2 S M} \sum_{i=1}^{M-1} c_{t_{i}} c_{i} \sin \phi_{i} \tag{c}
\end{align*}
$$

The normal force coefficient and leading-edge thrust coefficient can be resolved in the free stream direction and perpendicular to it as shown in figure 13 to obtain the lift coefficient and the induced drag coefficient:

$$
\begin{array}{ll}
C_{L}=C_{N} \cos a \\
C_{D}=C_{N} \operatorname{Sin} a & (2.38 a) \\
C_{L_{a}}=C_{T} \operatorname{sir} a \tag{2.38c}\\
C_{D_{t}}=C_{T} \operatorname{Cics} \omega & (2.38 c)
\end{array}
$$

where α is the angle of attack. Equetions (2.38) can now be used to obtain the total lift and induced drag coefficierts:

$$
\begin{align*}
& C_{I}=C_{Y} \cos \alpha+C_{F} \text { Sir } \alpha \tag{2.39}\\
& C_{D_{i}}=c_{N} \sin \alpha-C_{Z} \cos \alpha \tag{2.40}
\end{align*}
$$

inten the flow along the leading-edge is completely separated, the -eacing-edge thrust coefficient is zerc.
3. Results and Iiscussion

It has been found during the investigation that the calculated induced velccities due to the wing become inaccurate if the control point of a free vortex segment, where induced velccities are to be evaluated, is any closer to the wing than twenty percent of the locel chord. On the other hand, the induced velocities calculated above the control points of the wing show a smooth trend. Therefore, if a free vortex segment is closer than twenty percent of the local chord, the induced velocities at its control point, i.e. mid point due to the wing, are obtained by linear interfolation of the velocities calculated above four wing control points among which the point is located.

It has also been found numerically that the aerodinemic characteristics depended on the number of spanwise strips, i.e. M of equation (2.2). Therefore, a parametric study has been made to find a relation between the aspect ratio and the number of spanwise strifs for reasonably accurate results (Fig. 14). It is to be noted that as the aspect ratio is decreased, the nuber of spanwise strips hes to be increased. This is due to the fect that the spanwise variation Of aerodynamic characteristics, such as pressure coefficient and thruct coefficient, is large for small aspect ratio wings. This study was performed by matching the lift coefficiente obtained by using tie present method to those obtained by using suction analogy (ref. 32) at one angle of attack.

The free elements of the leading-edge vortex system heve been restricted not to come any closer than a minimum specified height to the wing surface, which is given empirically by,

$$
\begin{array}{ll}
z_{\min }=0.1 c_{R} \tan (22.5-0.5 \alpha) & \text { for } \alpha \leq 15^{\circ} \\
z_{\min }=0.1 c_{R} \tan \alpha & \text { for } \alpha \geq 15^{\circ}
\end{array}
$$

where C_{R} is the root chord and α the angle of attack. This restriction was needed because whenever the free elements are close to the wing surface, they induce large velocities on the wing and vice versa, which makes the free elerrents fiuctuate (unstable). In the real flow, at smail angies of attack, the leading-edge vortex system is weak and diffused. The present method does not account for diffused vortices and so the effect of the free vortices is artifically reduced by increasing $Z_{\text {rin }}$ as the angle of attack is decreased below 15 degrees.

All the results have been calculated by using six chordwise vortex elements on the wing; i.e., N of equation (2.1) is 6 , and the length of the free vortex segments being 15 percent of the root chord. The effect of the number of chordwise vortex eiements and the length of the free vortex segments is insignificant.

A computer program has been developed for the present model with the above restrictions (rer. 42). It has been used to generete aerodynamic characteristics for flat delta wings of severel aspect
ratios. These predicted results are compared with the availatie experimental data and the results by the suction analogy (ref. 32), Kandil's model (ref. 23) and Brune's model (ref. 30) as obtained by Kuhlman (ref. 32). The lift- and pitching moment-coefficients are plotted against angle of attack for complete leading-edge separation cases, i.e. zerc leading-edge thrust, in figures 15 thrcugh 19. In general the agreement for the lift coefficient between the rreser.t rethod, suction analcgy (ref. 32), Brune's model (ref. 30) and experimerital data is quite good. The present rethod usually overpredicts the lift coefficient at small angles of attack whereas Brune's model (ref. 30) underpredicts it. For the wing of aspect ratio 0.7053 , the present rethod becomes less accurate at higk argles of attack (figure 15). This could be due to the large rate of change of pressure coefficierts in spankisc cirections at large angies of attack for smail asfect retio wings. A better agreement could be obtained by increasing the number of spanwise strips for small aspect ratio wings at large angles of atteck. An excellent agreement is seer. fcr the pitching moment coefficients calculated by using the present wethici and the experimental date in figures 16 and 17 . The suction enalogy can not predict accurate pitching moment coefficient because it does not calculate the surface load distrjbution. Although surface load distribution is predicted in Brune's model (ref. 30), the pitching moment coefficients are not predicted accurately. The pitching moment coefficients predicted by Kandil's model (ref. 25) for aspect ratio 2.0 wing are in a better agrumint with experimental data
than any other method, but the model is restricted up to a 20 degree angle of attack only. The effect of Mach number on the lift- and Fitching moment coefficients at different angles of attack for aspect ratic 1.5 wing is shown in figure 20 and the trend for the lift coefficient agrees with that predicted by the suction analogy. The pressure distribution for three delta wings at several argles of attack and constant x-locations are shown in figures 21 through 23. In general the pressure peak obtained by using the present method is lower than the experimental value and is shifted towards the root chord. Figure 22 shows the only comparison with the theoretical methcd of Brune (ref. 33) and a sharp peak is visible in Srune's model. The reason for the peak being lower in the present model is that each free vortex acts as a concentrated core by itself whereas Brune's model has a separated vortex sheet with a concentrated core at its end. Therefore, in Brune's model a sharp pressure peak will be present, whereas in the present model the pressure distribution will be more diffused.

Thus far it has been shown that the present model gives reasonable results for completely separated flow along the leading-edge. The thecretical effect of partial leading-edge separation on the aerodynaric characteristics will be shown next. Figure 24 shows the effect of varying the amount of the leading-edge suction lost on the aerodynamic characteristics for delta wing of aspect ratio 2 . It cen be seen from the ficures thei fir a fixed angle of attack, the lift coefficient and the induced drag increases as the amount of the
leading-edge suction lost increases. These trends are similar to the ones shown by Henderson (ref. 1). For these cases the lift is found to be highly nonlinear with angle of attack. On the other hand, a definite trend in the variation of pitching moment coefficient is not seen.

At present, the theoretical prediction of the phenomena of partial leading-edge vortex separation is not possible. The extent of the separation has been known to depend on the leading-edge geometry, the Reynolds number and the wing sweep angle (ref. 1). When the degree of partial separation can be predicted, the present method can be used to calculate the corresponding aerodynamic characteristics.

4. Conclusions and Recomniendations

A theoretical method has been developed for predicting the aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation. The present method has been shown to work. satisfactcrily for cases with conplete leading-edge vortex separation, where the leading-edge suction is zero. Some preliminary theoretical results for cases with fartial leading-edge vortex separation appear tc te reasonable. The methed hac an advantage over all previous vortex Iattice methods in that the leading-edge boundary condition cer. tie exactly satisfied. It is not restricted to incompressible flcw. At the present time it is restricted to Flanforms with pcinted wing tips only. The present method can be exterded to hanale erbitrery fianforms at high angles of attack, as long as the vortex bursting does not occur.

The recomended topics of further researct on this mettrad are:
e. Extend the methed to include the wing-tif vortices.
t. Search for a better iteration scineme for faster convergence and lock for a better convergence criteria.
c. Modify the method for thick wings.
d. The method can easily be extenced to complex planforms in Which the inboard portion has separated fiow and the outbcard has attached flow.
e. The method shouldbe checked for some more cases with partia: leading-edge separation.
f. The computer program coding should be made more efficient.

5. References

1. Henderson, W. P., "Effects of Wing Leading-Edse Radius and Reynolds Number on Longitudinal Aerodynamic Characteristics of Highly Swept Wing-Body Configurations at Subsonic Speeds", INASA TiN D-8361, 1976.
2. Legendre, R., "E'coulement an voisinage de la pointe avant d'une aile à forte fièche aux incidences moyennes", Rechere Aéronautique (O.N.E.R.A), No. $30, \mathrm{pp} .3-8,1952$.
3. Adams, M. C., "Leading-Edge Separation from Delta Wings at Supersonic Speeds", Journal of the Aeronautical Sciences (Reader's Formo), Vol. 20, No. 6, June 1953.
4. Legendre, R., "E'coulement an voisinage de la pointe avant d'une aile à forte flèche aux incidences moyennes", Rechere Aéronautioue (O.N.E.‥A.), No. 35, pp. 7-3, 1953.
5. Edwards, R. H., "Leading-Edge Separation from Delta Wings," Journal of the Aeronautical Sciences, Vol. 21, No. 2, Eeb. 1954.
E. Drown, C. E. and Micnael, W. H., "On Slender Delta wings with Leading-Edge Separation", IACA TN 3430, 2955.
-. Mangler, K. W. and Smith, J.H.B., "A Theory of tine Elow Past a Siender Delta Wing with Leadinf-Edge Separation', Proc. Roy. Soc. A251, pp. 200-217, 1959.
6. Seith, J.H.B., "Improved Calculation of Leading-Edee Separation for Slender, Thin, Delta Wings", Proc. Roy. Soc. A 30б, pp. 57-90, 1963.
7. Smith, J.H.B., "Calculations of the Flow over Thick, Conical, Slender Wings with Leading-Edge Separation", ARC R \& M 3694, 1971.
8. Gersten, K., "Calculation of Non-linear Aerodynamic Stability Derivatives of Aeroplanes", AGARD Report 342, April 1961.
9. Bollay, W., "A Von-Iinear Wing Theory and Its Application to Rectangular irings of Small Aspect Ratio", 2. Angew. Math. Mech., Bd 19, Mr. 1, pp. 21-35, Feb. 1939.
10. Garner, H. C. and Lehrian, D. E., "Non-Linear Theory of Steady Forces on Wings with Leading-Edge Separation", ARC R \& M 3375, 2963.
11. Multhopp, H., "Method for Calculating the Lift Distribation of Wings (Subsonic Lifting Surface Theory)", ARC $\mathrm{F} \varepsilon: 2884,1950$.
12. Sacks, A. H., Lundberg, R. E. and Hanson, C. W., "A Zneoretical Investigation of the Aerodynamics of Slender Wing-Body Combinations Exhibitine Leading-Zage Separation", HASA CR-719, 1967.
13. Lawrence, H. R., "The Lift Distribution on Low Aspect Ratio Wings at Subsonic Speeds", J. Aeron. Sci., Vol. 13, Io. 10, Oct. 1051.
 Delta Wings with Leadinc-Edge Separation at Low Speeds", ARC CP-1086, 1958.
14. Poihamus, F. C., "A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leadinf-Edge-Suction Analogy", JASA T: D-3767, 1966.
15. Polhamus, E. C., "Charts for Predicting the Subsonic Vortex-Lift Characteristics of Arrow, Delta and Diamond Wings", NASA mD6243, 1971.
16. Lamar, J. E., "A Modified Maithopp Approach for Predictine Lifting Pressures and Camber Shape for Composite Planforms in Subsonic Flow", NASA TN D-4427, 1968.
17. Snyder, it. H. and Lamar, J. E., "Application of the Leading-EigeSuction Analogy to Prediction of Longitudinal Load Distribution and Pitching Moments for Sharp-Edged Delta Wings", NASA TN D-6994, 1972.
18. Mook, D. T. and Maddox, S. A., "Extension of a Vortex-Lattice Method to Include the Effects of Leading-edge Separation", Journal of Aircraft, Vol. 11, pp. 127-128, Feb. 1974.
19. Giesing, J. F., Kalman, T. F. and Rodden, W. P., "Subsonic Unsteady Aerodynamics for General Configurations; Direct Application of the Non-planar Doublet-Lattice Method", USAF FDL-TR-71-5, 1971.
20. Kandil, O. A., Mook, D. T. and Nayfeh, A. H., "Nonlinear Prediction of the Aerodynamic Loads of Lifting Surfaces", AIAA Paper Jo. 74-503, 1974.
21. Belotserkovskii, S. M., "Calculation of Flow Around Wing of Arbitrary Planform Over a Wide Range of Ancles of Attack", Mekhanika Zhidkosti i Gaza, Vol. 3, io. 4, pp. 32-4i, 1963, Translated in Fluid Dynamics, Consultants Bureau, mp. 20-27.
22. Kandil, O. A., Mook, D. T. and Nayfeh, A. H., "Subsonic Loads on Wings Having Sharp Leading-Edges and Tips", Journal of Aircraft, Vol. 13, No. 1, pp. 62-63, 1976.
23. Kandil, O. A., Mook, D. T. and Nayfeh, A. H., "New Convergence Criteria for the Vortex-Lattice Models of the Leading-Edge Separation", NASA SF-405, 1976.
24. Rehbach, C., "Calculation of Flows Around Zero Thickness Wings with Evolutive Vortex Sheets", MASA TTF-15183, 1973.
25. Rehbach, C., "Numerical Investigation of Vortex Sheets Issuing from a Separation Line Near the Leading-Edge", NASA TPF-15530, 1974.
26. Nathman, J. K., "Delta Wings in Incompressible Flows", AIAA Paper No. 77-320, 1977.
27. Brune, G. W., Weber, J. A., Jobnson, T. T., Lu, P. and Rubbert, P. E., "A Three Dimensional Solution of Flow over Wings with Leading-Edge Separation, Part I - Engineering Document", :IASA CR-132709, 1975.
28. Lan, C. E., "A Quasi-Vortex-Lattice : Method in Thin Vine Theory", Journal of Aircraft, Vol. 11, No. o, pp. 518-527, Sept. 1974.
29. Lamar, J. E. and Gloss, B. B., "Subsonic Aerodynamic Characteristics of Interacting Lifting Surfaces with Separated Flows around Sharp Pdges Predicted by a Vortex Lattice Method", IASA $\mathrm{m}: \mathrm{D}-7921,1975$.
30. Kuhiman, J., "Load Distributions on Slender Delta Wings haviñ Vortex Flow", Journal of Aircraft, Vol. 14, Ho. 7, pp. 699-702, July 1977.
31. Fink, P. T., "Wind-Tunnel Tests on a Slender Delta Wing at High Incidence", 2. Flucwissenschaften, Jahrg. 4, Heft 7, pp. 247249, July 1956.
32. Peckham, 2. i.., "Low-Speed rind-Tunne? Tests on a Series of Uncambered Slender Pointed Winss with Sharp Edges", ARC P. \& M 3186, 1961.
33. Tosti, L. P., "Low-Speed Static Stability and Damping-in-Roll Characteristics of Some Swept and Unswept Low Aspect Ratio Wings", MACA TN 1468, 1947.
34. Wentz, W. II., "Effects of Leading-Edge Camber on Low-Speed Characteristics of Slender Delta Wings", RASA CR-2002, 1972.
35. Bartlett, G. E. and Vidal, R. J., "Experimental Investigation of Influence of Edge Shape on the Aerodynamic Characteristics of Low Aspect Ratio Wings at Low-Speeds", Journal of the Aeronautical Sciences, Vol. 22, No. 8, pp. 517-533, Aug. 1955.
36. Fink, P. T. and Taylor, J., "Some Low-Speed Experiments with 20 deg. Delta Wings", ARC R \& : $3489,1957$.
37. !tarsden, D. J., Simpson, R. I. and Rainbird, W. J., "The Flow over Delta "ings at Low Speeds with Leadiñ-Fdge Separation", The College of Aeronautics, Cranfield, Rept. No. 114, Feb. 1058.
38. Butler, D. J. and Hancock, G. J., "A inmerical Method for Calculating the Trailing Vortex System behind a Swept Wing at Low Speed", The Aeron. J. of the Royal Aeronautical Society, Vol. 75, op. 564-568, Aurs. 1971.
39. Mehrotra, S. C., " Λ Theoretical Investigation of the Aerodynamics of Low Aspect-Patio Wings with Partial Leading-Fdge Separation A Computer Program", University of Kansas Report CRINC-ERI-266-2, 1978.

6. Appendices

6.1 Appendix A: Evaluation of Induced Velocity Due to a Line Vortex-

Segment
In the linearized compressible flow the velocity field induced by a line vortex segment of strength Γ (figure 12) is given by (ref. 31),

$$
\vec{V}(\vec{R})=\frac{\beta^{2} \Gamma}{4 \pi} \delta_{\ell} \frac{\left(\vec{R}_{\ell}-\vec{R}\right) \times d \vec{~}}{R_{Z}^{3}}
$$

where

$$
\begin{aligned}
B=\sqrt{1-M^{2}}, \vec{R} & =x \vec{i}+y \vec{j}+z \vec{k} \\
\vec{R}_{l} & =\xi_{i}+\vec{j}_{j}+\zeta \vec{k} \\
\vec{R}^{\prime} & =x \vec{i}+\beta y \vec{j}+\beta z \vec{k} \\
\vec{R}_{l}^{\prime} & =\xi_{i}+\beta \eta \vec{j}+B \zeta \vec{k} \\
R_{Z} & =\left[(\xi-x)^{2}+\beta^{2}(n-y)^{2}+R^{2}(\zeta-z)^{2}\right]^{1 / L} \\
& =\left|\vec{R}_{l}^{\prime}-\vec{R}^{r}\right|
\end{aligned}
$$

The substitution $\vec{R}_{\ell}-\vec{R}=\vec{a}+\tau \vec{\ell}$, reduces equation (A.1) to,

$$
\begin{align*}
\vec{V}(\vec{R}) & =\frac{B^{2} \Gamma}{4 \pi} \vec{a} \times \vec{l} \int_{0}^{1} \frac{d \tau}{\left(\bar{A} \tau^{2}+\bar{B} \tau+\bar{C}\right)^{3 / 2}} \\
& =\frac{\beta^{2} \Gamma}{4 \pi} \vec{a} \times \vec{l}\left\{\frac{2 \bar{B}}{\left(\bar{B}^{2}-4 \bar{A} \bar{C}\right) \bar{C}^{1 / 2}}\right. \\
& \left.-\frac{2(2 \bar{A}+\bar{B})}{\left(\bar{B}^{2}-4 \bar{A} \bar{C}\right)(\bar{A}+\bar{B}+\bar{C})^{1 / 2}}\right\}, \bar{B}^{2}-4 \bar{A} \bar{C} \neq 0 \tag{A.2}
\end{align*}
$$

where $\bar{A}=|\vec{\ell} \cdot|^{2}, \bar{B}=2 \vec{a} '$. 䕎 and $\bar{C}=|\vec{a} \cdot|^{2}$. Further, it can be shown that (ref. Si),

$$
\begin{align*}
& \bar{B}^{2}-4 \bar{A} \bar{C}=-\left.4\right|_{\vec{a}} \cdot \times\left.\vec{l} \cdot\right|^{2} \tag{A.3}\\
& 2 \bar{A}+\bar{B}=2 \overrightarrow{b^{\prime}} \cdot \overrightarrow{l^{\prime}} \tag{A.4}\\
& \bar{A}+\bar{B}+\bar{C}=|\vec{b} \cdot|^{2} \tag{A.5}
\end{align*}
$$

where

$$
\begin{aligned}
& \vec{a}=\left(x_{1}-x\right) \vec{i}+\left(y_{1}-y\right) \vec{j}+\left(z_{1}-z\right) \vec{k} \\
& \vec{b}=\left(x_{2}-x\right) \vec{i}+\left(y_{2}-y\right) \vec{j}+\left(z_{2}-z\right) \vec{k} \\
& \vec{d}=\left(x_{2}-x_{1}\right) \vec{i}+\left(y_{2}-y_{1}\right) \vec{j}+\left(z_{2}-z_{1}\right) \vec{k} \\
& \vec{a}=\left(x_{1}-x\right) \vec{i}+B\left(y_{1}-y\right) \vec{j}+B\left(z_{1}-z\right) \vec{k}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{b}^{\prime}=\left(x_{2}-x\right) \vec{i}+B\left(y_{2}-y\right) \vec{j}+B\left(z_{2}-z\right) \vec{k} \\
& \vec{l}^{\prime}=\left(x_{2}-x_{1}\right) \vec{i}+B\left(y_{2}-y_{1}\right) \vec{j}+B\left(z_{2}-z_{1}\right) \vec{k}
\end{aligned}
$$

On rearranging, equation (A.2) becomes

$$
\begin{equation*}
\vec{V}(\vec{R})=\frac{\beta^{2} \Gamma}{4 \pi} \frac{\vec{a} \times \vec{l}}{|\vec{a} \times \vec{l}|^{2}}\left\{\frac{\left.\vec{b}\right|^{\prime}}{|\vec{b}|}-\frac{\vec{a}^{\prime}}{|\vec{a} \cdot|}\right\} \cdot \frac{\vec{l}}{} \tag{A.6}
\end{equation*}
$$

6.2 Appendix B: Derivation of Expressions for Pressure Distribution Consider two adjoining sets of spanwise strips of bound elements (Sketch B.1). Along the common edge, there are three trailing vortices: one due to right set of bound elements, one due to the left set of bound elements and the other due to the leading-edge vortex system. The force acting on the chordwise element of length Δx of the leading-edge vortex system is, by the Kutta-Joukowski theorem,

$$
\begin{equation*}
F_{L_{i}}=\rho v_{\infty}^{2} \Gamma_{j} v_{i} \Delta x \tag{B.1}
\end{equation*}
$$

where p is the fluid density, V_{∞} the free stream velocity, Γ_{g} the strength of fth leading-edge vortex element and v_{i} the sidewash at point i. It follows that the force acting at ith point per unit dynamic pressure and length is,

$$
\begin{equation*}
\left(\frac{F_{L_{i}}}{q \Delta x}\right)=2 \Gamma_{j} v_{i} \tag{B.2}
\end{equation*}
$$

where $q=\frac{1}{2} \rho V_{\infty}^{2}$, the dymamic pressure. A similar expression for the force per unit dynamic pressure and lengtr can be written for the outside leg of the jth strip as,

$$
\begin{equation*}
\left(\frac{F_{i}}{Q \Delta x}\right)_{R}=-2 v_{i} f^{x_{i}} y \partial x \tag{B.2}
\end{equation*}
$$

where γ is the bound vortex density ${ }_{l}{ }_{l}$ the leading-edge x-coordinate of the trailing-leg under consideration. The transformation,

$$
\begin{equation*}
x=x_{Q}+\frac{c_{i}}{2}\{1-\cos \theta\} \tag{B.4}
\end{equation*}
$$

reduces equation (E.3) to the form,

$$
\begin{align*}
\left(\frac{F_{i}}{q \Delta x}\right)_{R} & =-v_{i} c_{j} \int_{0}^{\theta_{i}} \gamma \sin \theta d \theta \\
& \left.\cong-\frac{\pi c_{j} v_{i}}{N} \sum_{k=1}^{i-1} \gamma_{k} \sin \theta_{k}+\frac{\gamma_{i} \sin \theta_{i}}{2}\right]_{R} \tag{B.5}
\end{align*}
$$

where c_{j} is the local chord, if the number of bound elements in chordwise direction and $e_{k}=\frac{(2 k-1)}{2 N} \pi$. The integral has been reduced to a finite sum through the regular trapezoidal rule. Similarly, for the left leg of $(j+1)$ th strip,

$$
\begin{equation*}
\left(\frac{F_{i}}{q \Delta x}\right)_{L}=\frac{\pi c_{i} v_{i}}{N}\left[\sum_{k=1}^{i-1} \gamma_{k} \sin \theta_{k}+\frac{\gamma_{i} \sin \theta_{i}}{2}\right] \tag{B.6}
\end{equation*}
$$

Therefore, the force per unit dynamic pressure and per unit length at the ith point is given by the sum of equations (B.2), (B.5) and (B.6).

$$
\begin{equation*}
\left(\frac{F_{i}}{q \Delta x}\right)=\left(\frac{F_{I_{i}}}{q \Delta x}\right)+\left(\frac{F_{N_{i}}}{q \Delta x}\right)_{R}+\left(\frac{F_{i}}{q \Delta x}\right)_{L} \tag{B.7}
\end{equation*}
$$

Equation (3.7) is evaluated at all endpoints of wirg bourd elements and linear interpolation is performed to obtain the force acting at the control station which is inside the vortex strip. Let it be denoted by $i_{j, i}$ for ith bound element of $j t h$ strip. Then, the contribution to differential pressure coefficient, ΔC_{p}, due to the chordwise vortices is,

$$
\begin{equation*}
\left(\Delta C_{p_{j, i}}\right)_{T}=\frac{H_{j_{2}}}{\Delta y_{j}} \tag{B.8}
\end{equation*}
$$

where Δy_{j} is the width of $j t h$ spanwise strip.
Contribution to ΔC_{p} due to bound elements is calculated in the following manner. The normal force per unit length acting at ith
bound element of jth strip (Sketch B.2) is,

$$
F_{B_{j, i}}=\rho v_{\infty}^{2}\left(u_{i} \gamma_{i} \cos \psi_{i}-v_{i} \gamma_{i} \sin \psi_{i}\right) \frac{\Delta y_{i}}{\cos \psi_{i}}
$$

or

$$
\begin{equation*}
F_{B_{j, i}}=2 q\left(u_{i}-v_{i} \tan \psi_{i}\right) \gamma_{i} \Delta y_{j} \tag{B.9}
\end{equation*}
$$

where γ_{i} is the bound vortex density, u_{i} and v_{i} the x and y components of the velocity, ψ_{i} the sweep angle of the bound elements and Δy_{j} the width of the jth strip. It follows that the ΔC_{p} due to the ith bound element is given by dividing equation (B.9) by $\left(q \Delta y_{j}\right)$;

$$
\begin{equation*}
\left(\Delta c_{p_{j, i}}\right)_{B}=z\left(u_{i}-v_{i} \tan \psi_{i} j \gamma_{i}\right. \tag{B.10}
\end{equation*}
$$

The total ΔC_{p} is given as the sum equations (B.8) and (B.10):

$$
\begin{equation*}
\Delta C_{p_{j, i}}=\left(\Delta C_{F_{j, i}}\right)_{T}+\left(\Delta C_{p_{j, i}}\right)_{B} \tag{B.11}
\end{equation*}
$$

Up to this point ΔC_{F} has been calculated at the regular wing vortex locations. The contribution from the leading-edge vortex element on the planform near the leading-edge ($E F$ in figure ll) has yet to be considered. This is done in two steps; i. Extrapoiate ΔC_{p} due to the wing vortex system to obtain the ΔC_{p} at the location of the leading-edge vortex eiement $i f$; and 2 . Subtract Δc_{p} incucej cy the leading-edge vortex element.

Sketeh 5.2

To obtain ΔC_{p} at any chordwise location, ΔC_{p} sir. e will be Fourier-analyzed. The factor, $\sin \theta$, is included to eliminate the known square root singularity of ΔC_{p} at the leading and trailing edges. Therefore, let

$$
\begin{equation*}
\Delta C_{p} \sin \theta=a_{0}+\sum_{=1}^{N} a_{\ell} \cos \ell \theta \tag{B.12}
\end{equation*}
$$

where,

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{0}^{\pi} \Delta C_{p} \sin \theta d \theta \\
& \cong \frac{1}{N} \sum_{k=1}^{N} \Delta C_{p_{k}} \sin \theta_{k}
\end{aligned}
$$

$$
\begin{aligned}
& a_{\ell}=\frac{2}{\pi} \int_{0}^{\pi} \Delta C_{p} \sin \theta \cos \ell \theta d \theta \\
& \cong \frac{2}{N} \sum_{k=1}^{N} \Delta C_{p_{k}} \sin \theta_{k} \cos \ell \theta_{k} \\
& \theta_{k}=\frac{(2 k-1)}{2 N} \pi, k=1,2, \ldots-\cdots N \\
& N-N u m b e r ~ o f ~ c h o r d w i s e ~ i n e s ~
\end{aligned}
$$

The integrals for Fourier coefficients are reduced to finite sums through the mid-point trapezoidal rule. Equation (B.12) can now be used to calculate ΔC_{p} at the location of the leading-edge vortex element $E F$, which is located at $\theta=\pi / 2(N+1)$. So achievemthe secor.d step mentioned above, the constant vorticity of the leadingedge vortex element is first converted to vortex dersity. The concentrated vorticity is reiated to vortex dersity by,

$$
\begin{equation*}
\Gamma=\int \gamma d x \tag{B.13}
\end{equation*}
$$

Assuming that the concentrated vorticity due to leading-eage vortex systen is distributed near the leading-edge cniju and using the mid-point trapezoidal rule, the equation (B.14) reduces to:

$$
\Gamma_{j}=\frac{\pi c_{j}}{2(N+1)} \gamma_{j} \sin \theta_{1}
$$

or

$$
\begin{equation*}
\gamma_{j}=\frac{2(N+1)}{\pi c_{j} \operatorname{Sin} \theta_{1}} \Gamma_{j} \tag{B.15}
\end{equation*}
$$

where $\theta_{1}=\pi / 2(N+1)$. Therefore, the decrease in ΔC_{p} value at the leading-edge vortex element is given by using equation (B.10) as,

$$
\begin{equation*}
\left(\Delta C_{p}\right)_{\text {decrease }}=-(u-v \tan \psi)_{l e} Y_{j} \tag{3.16}
\end{equation*}
$$

where the subscript le means that the variables u, v and ψ are evaluated at the leading-edge vortex element. Note that this decrease in ΔC_{p} value near the leading-edge from the usuai ΔC_{p} distribution is a result of the leading-edge Kutta condition. Hence, the equations (B.12) and (B.14) can be used to calculate the actual ΔC_{p} at the location of the zeading-edge vortex elements.

Figure 5. Gersten's model

ORIGINAL PAGE IS OE POOR QUALITY

Figure 6. Mook and Maddox model

Fixed wake model

Free wake rodel

Figure 8. Nathman's models

Figure 10. Wing geometry witnout leading-edge vortex system

Figure 11. A typical vortex element of leading-edge vortex system

Figure 12. Vortex segment geometry

Figure 14. Variation of number of spanwise strips with aspect ratio

ミisure 15 . Variation of liftt ana pitching moment (about $0.25 \bar{C}$) coefficients with angle of attack for aspect ratio 0.7053 delta wing

 with argle of attack for aspect ratic 1.0 delta wing

Figure 17 . Variation of lift and pitoing moment (about $0, \mathrm{c}$) coefficients with angle of attack for Ejoect ratio 2.247 del i, 1 wing

Figure 18. Variation of lift and pitching moment (about $0.25 \bar{C}$) coeificients with angie of attack for aspect ratio 1.4559 deita wing

Figure 29a. Variation of İft coefficient with angle of attack for aspect ratio 2.0 centa wing

Figure 19b. Variation of pitching moment (about apex) coefficient with angle of attack for aspect ratio 2.0 delta wing

Figure 20a. Variation of lift coefficient with angle of sttack for aspect ratio 1.5 delte wing at $M_{\infty}=0$. anci $0 . \epsilon$

Figure 20b. Variation of pitching moment (about apex) coefficient with angle of attack for aspect ratio 2.5 delta wing at $M_{\infty}=0$ and 0.6

Figure 2]. ΔC_{p} distritution for aspect ratio 0.7053 delta wing at 10.0 degree angie of attack

Figure 22a. ΔC_{p} distribution for aspect ratio 1.147 delta wing at 10.2 degree angle of attack

Figure $22 \mathrm{~b} . \Delta C_{p}$ distribution for aspect ratio 1.147 delta wing at 20.4 degree angle of attack

Figure 22c. ΔC_{p} distribution for aspect ratio 1.147 delts wing at 30.7 degree angle of attack

Figure 23 b . ΔC_{p} distribution for aspect ratio 1.4559 delta wing at 19.1 degree angle of attack

Figire 24a. Variation of 1ift and pitching moment (about $0.25 \overline{\mathrm{C}}$) coefficient with angle of attack for aspect ratio 2.0 delta wing for different amounts oi ieadine-edge suction

Figure 24b. Variatich of incueed duag coefficient with angle $0=3 \pm .0 \mathrm{ak}$ for aspect rainio 2.0 geita wing for different ariounts 0 : leading-erde suction

[^0]
[^0]: * For sale by the National Technical Inlormation Service. Springlield. Vitginia 22161

