11 research outputs found

    GS-TEC::the Gaia Spectrophotometry Transient Events Classifier

    Get PDF
    We present an algorithm for classifying the nearby transient objects detected by the Gaia satellite. The algorithm will use the low-resolution spectra from the blue and red spectro-photometers on board of the satellite. Taking a Bayesian approach we model the spectra using the newly constructed reference spectral library and literature-driven priors. We find that for magnitudes brighter than 19 in Gaia GG magnitude, around 75\% of the transients will be robustly classified. The efficiency of the algorithm for SNe type I is higher than 80\% for magnitudes GG\leq18, dropping to approximately 60\% at magnitude GG=19. For SNe type II, the efficiency varies from 75 to 60\% for GG\leq18, falling to 50\% at GG=19. The purity of our classifier is around 95\% for SNe type I for all magnitudes. For SNe type II it is over 90\% for objects with GG \leq19. GS-TEC also estimates the redshifts with errors of σz\sigma_z \le 0.01 and epochs with uncertainties σt\sigma_t \simeq 13 and 32 days for type SNe I and SNe II respectively. GS-TEC has been designed to be used on partially calibrated Gaia data. However, the concept could be extended to other kinds of low resolution spectra classification for ongoing surveys.Comment: 17 pages, 14 figures, accepted to be published in Monthly Notices of the Royal Astronomical Society [MNRAS

    The Robotic Multi-Object Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI)

    No full text
    A system of 5,020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically re-target their optical fibers every 10 - 20 minutes, each to a precision of several microns, with a reconfiguration time less than 2 minutes. Over the next five years, they will enable the newly-constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5,020 robotic positioners and optical fibers, DESI's Focal Plane System includes 6 guide cameras, 4 wavefront cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multi-object, fiber-fed spectrographs

    The Robotic Multi-Object Focal Plane System of the Dark Energy Spectroscopic Instrument (DESI)

    No full text
    International audienceA system of 5,020 robotic fiber positioners was installed in 2019 on the Mayall Telescope, at Kitt Peak National Observatory. The robots automatically re-target their optical fibers every 10 - 20 minutes, each to a precision of several microns, with a reconfiguration time less than 2 minutes. Over the next five years, they will enable the newly-constructed Dark Energy Spectroscopic Instrument (DESI) to measure the spectra of 35 million galaxies and quasars. DESI will produce the largest 3D map of the universe to date and measure the expansion history of the cosmos. In addition to the 5,020 robotic positioners and optical fibers, DESI's Focal Plane System includes 6 guide cameras, 4 wavefront cameras, 123 fiducial point sources, and a metrology camera mounted at the primary mirror. The system also includes associated structural, thermal, and electrical systems. In all, it contains over 675,000 individual parts. We discuss the design, construction, quality control, and integration of all these components. We include a summary of the key requirements, the review and acceptance process, on-sky validations of requirements, and lessons learned for future multi-object, fiber-fed spectrographs
    corecore