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ABSTRACT
We present an algorithm for classifying the nearby transient objects detected by the Gaia
satellite. The algorithm will use the low-resolution spectra from the blue and red spectro-
photometers on board of the satellite. Taking a Bayesian approach we model the spectra us-
ing the newly constructed reference spectral library and literature-driven priors. We find that
for magnitudes brighter than 19 in Gaia G magnitude, around 75% of the transients will be
robustly classified. The efficiency of the algorithm for SNe type I is higher than 80% for
magnitudes G 618, dropping to approximately 60% at magnitude G=19. For SNe type II,
the efficiency varies from 75 to 60% for G 618, falling to 50% at G=19. The purity of our
classifier is around 95% for SNe type I for all magnitudes. For SNe type II it is over 90% for
objects with G 619. GS-TEC also estimates the redshifts with errors of σz 6 0.01 and epochs
with uncertainties σt ' 13 and 32 days for type SNe I and SNe II respectively. GS-TEC has
been designed to be used on partially calibrated Gaia data. However, the concept could be
extended to other kinds of low resolution spectra classification for ongoing surveys.

Key words: supernovae: general — methods: statistical — techniques: spectroscopic —
catalogues — surveys

1 INTRODUCTION

The study of transient phenomena is a field of increasing interest:
for example, the observations of type Ia Supernovae (SNe) have
lead to the discovery of the accelerated expansion of the Universe
(Perlmutter et al. (1999), Riess et al. (1998)) and have played a
fundamental role in the discovery of Dark Energy. Furthermore the
investigation of transient phenomena at multiple wavelengths have
lead to a better understanding of SNe progenitors (Smartt 2009)
and modelling of the explosion mechanisms.

The era of large transient surveys has just begun with, for
example, the Palomar Transient Factory (PTF, Rau et al. (2009)),
Pan-STARRS (Kaiser et al. 2002), and Catalina Realtime Transient
Survey (CRTS, Djorgovski et al. (2011b)). Gaia, the ESA corner-
stone mission (Perryman et al. 2001), whilst primarily an astrome-
try mission, will have a significant ability in revealing the transient
universe. Gaia, will provide highly accurate parallaxes for over a
billion stars. In addition, it will provide a wealth of additional in-
formation about each star: full six dimensional astrometric param-
eters; and astrophysical parameters such as effective temperature,
surface gravity, metallicties and reddening. Since Gaia will observe
each point of the sky around 70 times on average, it will, over the

? E-mail:nblago@ast.cam.ac.uk
† E-mail:koposov@ast.cam.ac.uk

nominal mission length of 5 years, detect many thousands of new
transient events. Indeed Gaia is expected to discover between 6000
and 7000 new SNe (Belokurov & Evans (2003), Altavilla et al.
(2012)), thus several SNe each day, down to a limiting magnitude
of Gaia G=20 which for SNe events corresponds to a redshift limit
z . 0.14.

The Gaia photometric science alerts system (Wyrzykowski
et al. 2012) will perform the detection, classification and dissem-
ination of the alerts on transient events to the scientific community.
The alerts system will process all data from Gaia, on a daily basis,
as soon as the data is downloaded. In the simplest case, it will issue
alerts based on flux changing by more than a defined magnitude
threshold. GS-TEC is a standalone module using the Gaia photo-
metric and spectrophotometric data allows the alerts system assign
a classification type and a classification probability to each alert.
This module is one of the three different classification modules that
the photometric science alerts intends to use for classification pur-
poses. The spectroscopic classification result provided by GS-TEC
will be published along with photometric data (lightcurve of the
event as detected by Gaia) and environment of the transient based
on catalogue search. However, it will be the only one providing in-
formation on SNe subtypes and their parameters. The description
of the full photometric science alerts pipeline and first results is
aimed to be released in a separate paper.

The alert stream will be non-proprietary and will be dis-
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2 Nadejda Blagorodnova et al.

tributed via public on-line services. The time to release the alerts
is still to be determined, but it will take between 24 and 48 hours
since the on-board observation. Its main goal is to provide infor-
mation to enable targeted selection for follow-up and to filter the
objects according to their scientific relevance. At this point it be-
comes essential to provide a reliable classification algorithm that
can provide information on the nature of the event, e.g. AGN, vari-
able star, SNe (plus its type), in addition to providing parameters,
such as redshift, or epoch to maximum brightness for the case of
slowly evolving objects like SNe. Other type of events such as Cat-
aclysmic Variables or Tidal Disruption Flares are also relevant for
Gaia classification scheme, however, the (almost) lack of broad fea-
tures in their spectra makes them a difficult target for a low reso-
lution spectral classification only. Therefore, in the present context
they will be considered as part of the black body-like population,
which is included in the classification.

The importance of having a real-time automated detection and
classification framework has been already pointed out by the teams
of PTF: Brink et al. (2013) and Bloom et al. (2012), and Catalina
(Djorgovski et al. 2011a) synoptic surveys. An average night may
receive several hundreds of potential alerts, which need to be pro-
cessed in nearly real time in order to characterize them and select
the most interesting targets for rapid follow-up.

This paper describes the classification algorithm developed to
enable the prototyping of SNe events from Gaia, where the primary
information source is the Gaia low resolution spectrophotometric
data. The paper has the following outline: Section 2 summarizes
the most relevant characteristics of Gaia Blue Photometer (BP) and
Red Photometer (RP), Section 3 describes the assembly of the ref-
erence spectral template library, Section 4 summarizes the method
employed. Sections 5 and 6 contains the results of applying the
classifier on ground-based observations of transient objects. The
discussion of the results is contained in Section 7 whilst summary
and conclusions are presented in Section 8.

2 Gaia SPECTROPHOTOMETRY

Gaia has four different passbands: G; GBP; GRP; and GRVS . Their
wavelength coverage is shown in figure 1. Each passband response
is a convolution of the optical response curves and the quantum
efficiency curves for each CCD type. The prisms that disperse the
light for the two photometric bands have coatings that work as low-
pass and high-pass filters for the BP and RP (Jordi et al. 2010).

The Gaia G magnitude corresponds to the unfiltered light from
the astrometric field, which covers almost all the optical range
(330−1050 nm). Its accuracy decreases from 0.3 millimag at G=12
to 20 millimag at G=20 (de Bruijne 2012), which makes it possi-
ble to monitor the brightness variability history for virtually all the
objects observed by Gaia. Alerts on transient events will be raised
when new objects or statistically significant changes in magnitude
are detected.

The BP and RP cover the optical ranges 330−680 nm and
640−1050 nm respectively and provide low resolution spectropho-
tometry with sampling ranging from 4 to 32 nm pixel−1 for BP and
7 to 15 nm pixel−1 for RP. According to the target apparent magni-
tude, 2-dimensional or 1-dimensional windows ( a 2-dimensional
window binned in the across-scan direction) will be allocated
around the point-like sources in the CCD, resulting in two- or one-
dimensional sets of measurements per object. The integrated cali-
brated fluxes for each band are transformed to GBP and GRP mag-
nitudes while the individual fluxes per pixel are transformed to a
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Figure 1. Gaia magnitude pass-band (solid black line), pass-bands of the
blue (dot-dashed blue line) and red spectrophotometers (dot dashed red
line). The normalized throughput of the Gaia RVS instrument is shown by
the dotted green line.

common instrument pixel reference frame. Flux and wavelength
calibrations are then applied to obtain properly calibrated spectra.
Figure 2 shows a comparison between ground-based low resolution
SNe spectra and Gaia-like BP and RP equivalents.

The Gaia radial velocity spectrometer (RVS) covers the GRVS

wavelength range 847−874 nm, to observe part of the spectra
around the Ca II triplet lines. This part of the spectrum is dis-
persed by a grating providing a resolution power of ∼11500 for
stars brighter than G ∼ 17 magnitude. This relatively shallow limit
precludes using the data from this instrument in our transient alert
analysis.

3 TRANSIENT SPECTRA TRAINING SET

One of the many ways to approach a classification and parametriza-
tion problem is to rely on models or templates, which can be used as
a training set. These objects provide an important reference point
to compare the incoming data against. This section explains how
the library was created from a set of spectral sources.

3.1 Sources of spectral training set

The reference libraries were constructed by collating transient
spectra from several sources of observed and model (template)
spectra.

The observed spectra mainly come from the PTF (Rau et al.
2009) and are available via WiseRep 1 resource (Yaron & Gal-Yam
2012). The other two sources are spectra from the CfA Supernova
Data Archive2 for SNe type Ia spectra and the Asiago SNe cata-
logue (Barbon et al. 1999).

The template spectra for galaxies and AGN were taken from
the SWIRE library, (Polletta et al. 2007). The HILIB Stellar Set

1 http://www.weizmann.ac.il/astrophysics/wiserep
2 http://www.cfa.harvard.edu/supernova/SNarchive.
html
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Figure 2. Left: Medium resolution spectra (10 Å pixel−1) of template spectra for SNe Ia at -10, 0, +10 and +20 days relative to maximum brightness in the
visual band. The thin line at 6500 Å is a visual guide to distinguish between the area covered by the red and by the blue spectrophotometers. Right: same
spectra converted into a BP/RP high signal-to-noise low-resolution format into counts /ADUs). Right hand side: 60 pixels from BP (330−680nm), left hand
side: 60 pixels from RP (640−1050nm). The grey areas are discarded in our analysis as they hardly carry any information.

of 131 stellar spectra with types from O5 to M2I (Pickles 1998)
were used as stellar templates. SNe templates are based on data
from Peter Nugent 3 and E. Hsiao SNe Ia templates (Hsiao et al.
2007). Finally we included in our template library a set of black
body spectra with temperatures ranging from 3000 K to 30000 K to
emulate objects with (almost) featureless spectra.

3.2 Standardization process of observed spectra

When building a library using ground-based observed spectra
we are faced with the problem of a set of heterogeneous, non-
standardised data. For use as a reference set for classification the
data needs to be as homogeneous as possible.

The key steps of our homogenisation process are: correction
for redshift to bring all spectra to rest-frame wavelengths; correc-
tion for reddening effects; and an edge correction to extend the ir-
regular wavelength coverage of observed spectra to the fixed wave-
length range 330 to 1050 nm covered by Gaia. This standardisation
procedure implies that we have to assign to every library spectrum
a set of parameters which characterize the observation

θ = (t, z, AV ), (3.1)

where t is the epoch of the observation measured in days be-
fore/after the maximum brightness in a particular photometric
band, z is the redshift and AV is the extinction in magnitudes in the
V passband. In a perfect world the spectra of objects of the same
spectral type and with the same parameters θ would be alike. How-
ever, in practice objects of the same type will exhibit differences
depending on factors such as metallicity, luminosity, mass outflow,

3 http://supernova.lbl.gov/˜nugent/nugent_
templates.html

the density of the surrounding medium and so on, which will mod-
ify both the general spectral shape and the individual strength of
absorption and emission lines. Since it is impractical to model all
possible effects, we include them in our analysis using a statistical
approach.

Of the three parameters included in θ, two, namely the redshift
and the approximate epoch of explosion (for SNe) are usually either
provided in the spectra repositories, or can be found in published
literature. However, the extinction values are usually unknown and
the effect of the extinction on the spectral shape can be significant.

To estimate the extinction knowing the redshift of the object
and epoch of the observation, we compare the observed spectra
with reddened templates at the same epoch. A range of values
of AV are applied to the template spectrum in 0.1dex steps using
the Cardelli extinction law (Cardelli, Clayton & Mathis 1989) and
RV = 3.1. Template and observed spectra are then compared using
a χ2 statistic to find the AV value providing the best match.

After de-reddening, the observed spectra are extrapolated, if
necessary, using the best template match to cover all the Gaia wave-
length range. Sharp transitions between observed and template
spectra are minimised by using 20 nm overlaps to ensure smooth-
ness. This procedure generally has very little impact on the simu-
lated Gaia spectra as the instrument response is much lower in the
blue and red ends. Figure 3 shows an illustration of the extinction
determination and correction procedure. The result of the standard-
ization process is a set of spectra of transients, extinction-corrected,
rest-frame corrected and fully defined over the wavelength range
300−1100 nm.

3.3 Library parametrization

The spectral reference library can be interpreted as a forward
model: given a particular object type and θ parameter we can pre-

c© 2014 RAS, MNRAS 000, 1–16
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Figure 3. Illustration of the extinction-correction process aiming at dered-
dening spectra by comparison with templates. The figure shows the indi-
vidual steps of this procedure: observed rest-frame spectra (grey thin line);
observed spectra smoothed by a Gaussian filter with σ = 100 Å(blue line);
template of the same spectral type and epoch (black line); smoothed ob-
served spectra, extinction-corrected and extended around edges spectrum
(red line). The extinction correction applied was AV =0.4 mag as determined
from the χ2 fit with the template.
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Figure 4. Representation of the medium BP/RP spectrum of a SNe type Ia at
rest-frame as seen 3 days after maximum brightness with no extinciton. The
black line shows the median spectrum of 24 input vectors. The blue region
shows the 1σ region, while the grey lines show individual SNe Ia spectra,
showing considerable variance in the details of the spectra. The amplitude
of this variation is accounted for in the model intrinsic dispersion.

dict the spectral shape of the object in the Gaia BP/RP space. The
synthesis of the predicted spectra requires selecting the standard-
ized spectra with the right type and epoch, redshifting and redden-
ing it according to θ and downgrading to Gaia format. This last
transformation requires an intermediate step, which computes the
number of photons per unit wavelength, per unit time, and per unit
surface area, photons s−1m−2nm−1 from the original spectra fλ in

units of erg cm−2Å−1s−1. The transformation is given by

Np(λ) = E/Ep =
F(λ) × 1 × 10−12 × λ

hc
(3.2)

where F(λ) is the flux in erg cm−2Å−1s−1, h is Planck’s constant in
Js and c is the speed of light in m s−1.

Transformation to a Gaia-like format is done by an internal
Gaia DPAC (Data Processing and Analysis Consortium) simulation
module designed to create BP/RP spectra called XpSim (Brown, A.,
private communication). This module convolves the spectra with
the optical response and BP and RP QE curves (figure 1) to generate
low-resolution spectra as would be provided by Gaia.

As noted previously, despite our homogenisation procedure
there will still be some intrinsic variation among spectra with the
same types and epochs and we will account for that in a statistical
way. To obtain a measure of the intrinsic variance of spectra for
objects with same type and parameters we group those with the
same parameters θ and then compute the median spectrum and its
variance. Figure 4 shows a median BP/RP spectrum of a SNe type
Ia 3 days after maximum. For this particular case 24 standardized
spectra were used to compute the median spectrum. The standard
deviation of the spectra in each pixel represents the model intrinsic
dispersion at that pixel.

Finally, as the observed spectra that we include in our library
do not include all possible epochs, we fill the gaps in the epoch
dimension by linearly interpolating the spectra and their variances
to a grid of epochs with 1 day spacing.

3.4 Transient numbers estimation

The classification process requires some prior information on the
expected number of transients for each class. In order to estimate
the number of alerts for a given object type in the Gaia survey
for a limiting magnitude G=19, we have to take several assump-
tions. From Altavilla et al. (2012) we estimate an optimistic num-
ber of 7000 SNe. Li et al. (2011a) provides the internal rates for
a magnitude-limited survey with a 30 day cadence. The non-SNe
rates are much less certain, and the given numbers are expected to
be updated during the mission.

The expected number of AGN is given by Mignard (2012).
From MacLeod et al. (2012) we estimate that only a fraction of
0.001 of AGN will vary more than 0.5 mag in a period of 30 days. If
we consider this variability as a threshold to trigger an alert, the ex-
pected number of detected AGN is around 500 objects. The number
of black body objects (BB), focuses mainly on very young core col-
lapse SNe (which are a minority given the Gaia cadence), Tidal Dis-
ruption Flares and Novae. Tidal Disruptions are rather rare events,
so we will focus on the case of Classical and Dwarf Novae. Their
number is inferred from the fraction relative to SNe in the predic-
tions realized for the PTF survey (Rau et al. 2009). In order to ac-
count for the difference in cadence among the two surveys, which
is 5 days for PTF and 30 days for Gaia, we assumed a uniform dis-
tributions for their time to decay and computed the difference in the
detected fraction.

Variable star contamination is difficult to predict, as no spe-
cific rates have been computed so far for Gaia, according to their
variability type, amplitudes and periods. Their discovery along the
mission will populate the Gaia internal reference catalogues. The
most suitable to be mistaken as transients are the variables with
long period and high amplitude, such as Miras. According to Eyer
& Cuypers (2000), in total Gaia will observe around 140 000 Mira

c© 2014 RAS, MNRAS 000, 1–16
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d = {d1..dN } data vector, where di is the number of photon
counts in position i

e = {e1..eN } error vector, where ei is the error on the observed
value di

D = {d, e} input data vector with uncertainties which repre-
sents the spectra to be classified

M model, represents the type (or class) of the event:
{SN Ia, SN Ibc, SN IIP, SN IIn, AGN, STAR, BB}

θ = (z, t, AV ) parameters for model M
f (i|θ,M) function which predicts the flux in position i given

the parameters and the model M
ωi uncertainty on the model f (i|θ,M) due to intrinsic

model dispersion
GM absolute magnitude for objects of type M.
σM standard deviation on the absolute magnitude G0.
mG Gaia apparent magnitude of the input vector.
mT theoretically predicted apparent magnitude for

transient with model M with parameters θ
σT theoretically predicted sigma for magnitude mT
mlim limiting magnitude for the Gaia survey.
v condition that the object is detectable by Gaia

Table 1. Summary of the notation used.

variables. These objects will be potential contaminants at the ini-
tial stages of the mission, specially during the first 6 months. We
could assume therefore that around 1400 objects will be observed
at magnitude 19 during this time. A summary of these numbers is
displayed in table 2. However, it worth noting that the detection
rates for each type of objects are going to evolve with time, along
with the transient discovery history of Gaia. After several months,
Gaia-specific rates will replace the a priori estimates.

4 CLASSIFICATION ALGORITHM

4.1 Data description

The data to be classified is in the form of BP and RP one-
dimensional vectors, each 60 elements long. We assume that the
data vector has been calibrated for the effects of light dispersion
due to different positions in the CCD as this process is included
in the data reduction pipeline. In some parts of the spectrum the
quantum efficiency is very low (grey area in in Figure 2) and we
have ignored them in the classification process leaving 40 central
pixels for each instrument. For convenience these two vectors are
concatenated to a single data vector {di} 80 elements long. Each
element of the vector di contains the photon counts for that pixel
and we also have the estimate of the measurement error ei which
together constitute the data D = {di, ei}. The model for these data is
determined by the type of the object M and the realised model for
the spectral vector f (i|θ,M) plus the intrinsic variance attached to
the model spectra ωi. Two other input parameters are available: v a
visibility flag which is set to 1 if the object is bright enough to be
detected by Gaia and 0 otherwise; and mG the apparent magnitude
of the objects at the time of the Gaia observation. A summary of
the notation used is given in Table 1.

4.2 Bayesian classification method

The classification is essentially a model selection problem and we
have used an adaptation of a time-series model selection method
(Bailer-Jones 2012). The goal is to compute the probability of

M N P(M)

AGN 500 0.053
SN Ia 5365 0.571
SN Ibc 295 0.032
SN II-P 930 0.100
SN IIn 400 0.043
Star 1400 0.148
Black body 500 0.053

Table 2. N is the estimation of number of alerts of a given object type in the
Gaia survey for limiting magnitude G=19. P(M) is the prior probabilities
for different object classes. See text for explanation.

each model provided: the observed data, the measurement error and
the prior information on the frequency of different models (object
classes) P(M), displayed in table2. As output we expect an array
of normalized posterior probabilities for each model (object class).
The probability for each individual model M is be given by

P(M|D,mG,v) =
P(D,mG,v|M)P(M)∫

P(D,mG,v|M)P(M)dM
. (4.1)

The likelihood of the observed data P(D,mG,v|M) for a given
model M is a likelihood marginalized over the parameters of the
transient θ and is given by

P(D,mG,v|M) =

∫
P(D,mG,v|θ,M)P(θ|M) dθ

(4.2)

P(D,mG,v|M) =

∫
P(D|θ,M)P(mG |v, θ,M)P(v|θ,M)P(θ|M) dθ

(4.3)

The first component in the equation above is P(D|θ,M), (detailed in
equation 4.4), and it is understood as the likelihood of the spectral
data vector D given the predicted vector f (θ,M) for model M with
parameters θ. This is basically the product of individual Gaussian
probabilities for each pixel position i. Note that both the observed
D and model spectra f (θ,M) are considered to be normalized, so
they do not carry any information on the transient’s magnitude.
P(mG |v, θ,M) , in equation 4.10, is the probability of seeing the
transient at apparent magnitude mG, given that the it belongs to
class M with parameters θ and it is detectable by Gaia. P(v|θ,M)
is the probability for the target to be visible and detectable by Gaia
given its class and parameters (see equation 4.11). Finally P(θ,M)
is the joint prior on the models and its parameters.

P(D|θ,M) =

N∏
i=1

P(di|σi, θ,M) (4.4)

For simplicity we assume that the errors ei are uncorrelated and that
the probability at each point i only depends on the measured flux,
di, estimated measurement error ei and the uncertainty of the true
underlying model ωi. The likelihoods for every pixel i will then be
given by a Gaussian distribution with variance equal to the sum of
the variance of data and the model.

P(di|ei, θ,M) =
1√

2π(e2
i + ω2

i )
e−[di− f (i|θ,M)]2/2(e2

i +ω2
i ) (4.5)

The choice on parameter prior function for each model,
P(θ|M) is the prior on each one of the considered parameters:

c© 2014 RAS, MNRAS 000, 1–16
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Figure 5. CompletenessSN Ia (blue) and ContaminationSN Ia (red) as function of probability threshold for class SN Ia at magnitudes 16 (top left),17 (top right),
18 (bottom left) and 19 (bottom right). The vertical black line shows when the contamination is 5%. The dashed line shows the completeness minus the
contamination.

P(z, t, AV |M), based on observational constraints. Again for sim-
plicity only three groups of priors have been considered: Su-
pernovae (SN); extra-galactic objects (AGN); and stellar objects
(STAR). The probability distribution of the reddening parameters
for SNe spectra is computed as a third order polynomial based on
the estimated AV values for all the training set derived during the
standardization process. Redshift priors are proportional to the vol-
ume at that redshift up to a cut off value of z = 0.14 for SNe and
z = 1 for AGN and galaxies, which represents the most distant
expected transients that will be bright enough to de detected, i.e.

P(z) =

α z2 + β if z 6 zlim

0 if z > zlim
(4.6)

where α is a normalization constant and β is a small constant (0.01)
to allow for very low redshift events.

For the epoch of the SNe we use a uniform prior as in general
we have no prior knowledge of when the SNe explosion occurred.
This completely uninformative prior is a worst case scenario as dur-
ing the Gaia mission there will be a non-detection history for the
objects in addition to photometric information. This can be used to
constrain the maximum epoch, or even distinguish if the transient
is in pre-, or post-, maximum light phase.

Using additional information and prior knowledge of the be-
haviour of objects to aid classification is common practice (Bailer-

Jones 2011). It is particularly useful for discarding parts of the pa-
rameter space which can not be populated because of physical con-
straints. Information on the object apparent magnitude and the fact
that the event was detected by Gaia can be used to significantly re-
duce the prior space for θ. Following this approach we introduce the
object’s visibility v and apparent magnitude in the Gaia G band,
mG. Then, given a class and a parameter space, we can compute
how likely the objects are to be visible by Gaia for each point in
this space, and how likely each point will be seen at apparent mag-
nitude mG. To compute this information for each model we need
the following ingredients:

• an absolute magnitude at the epoch of maximum brightness
in the V band (Li et al. 2011a). As the visual V band is close to
the Gaia G band for blue transients (Jordi et al. 2010), the peak
absolute magnitude for class M can be described by a normal dis-
tribution of mean GM and standard deviation σMi.e.N(GM , σM). In
order to make our priors less dependent on statistical fluctuations,
increasing our ignorance on the true underlying absolute magni-
tude distribution, the adopted standard deviation is twice the value
provided by literature;
• the evolution of the object’s magnitude as a function of the

epoch relative to maximum brightness, where the brightness at each
epoch is modelled as a Gaussian distribution around the mean light
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Figure 6. Top left: Classification completeness (efficiency) as a function of magnitude for each individual class. Top right: Classification purity (e.g. one minus
contamination) as a function of magnitude and class. Bottom left: Classification completeness as a function of magnitude for the two main SNe subtypes.
Bottom right: Classification purity as a function of magnitude and class for the two main SNe subtypes.

curve mlc(t) with standard deviation σlc(t) i.e.N(mlc(t), σlc(t)). The
light curves and dispersions of the light curve for each model have
been computed from Li et al. (2011b);
• d the luminosity distance at redshift z assuming the cosmolog-

ical parameters {ΩM=0.3, ΩΛ= 0.7, h=0.7}.

Overall, the theoretically predicted apparent magnitude, mT (θ,M)
is a combination of the object absolute peak magnitude, light curve
phase, luminosity distance and the amount of extinction along the
line of sight.

mT (θ|M) = GM + 5log(d) − 5 + AV + mlc(t) (4.7)

σT (θ|M) =

√
σ2

M + σlc(t)2 (4.8)

The probability that the transient is seen at an apparent mag-

nitude mG only holds when mG 6 mlim.

P(mG |v, θ,M) =
P(mG |θ,M)
P(v|θ,M)

(4.9)

P(mG |θ,M) =
1√

2πσT (θ|M)2
exp
{
−

[mG − mT (θ|M)]2

2(σT (θ|M)2)

}
(4.10)

In order to obtain a normalized distribution, we should nor-
malize to the object visibility: P(v|θ,M) which is the third compo-
nent in eq. 4.3. It accounts for discarding all the parameter space
for model M where objects would be too faint to be detected by the
satellite, or in other words, mT > mlim. Therefore, the probability
that the object is detectable by the satellite is the cumulative prob-
ability distribution for an object of type M with parameters θ to be
brighter than mlim,

P(v|θ,M) =
1√

2πσT (θ|M)2

∫ mlim

−∞

exp
{
−

[m − mT (θ|M)]2

2σT (θ|M)2

}
dm

(4.11)
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4.3 Assessing classification performance

In general the classification result may be ambiguous with sev-
eral models having similar probabilities for a given sample of in-
put data. The reasons could be diverse ranging from low signal-to-
noise in the input data to unforeseen types of transient. We aim to
identify these cases and mark them as ambiguous classifications.
This means that only classifications considered to be reliable can
be selected, leaving characterization of uncertain targets to further
observational follow-up.

The key parameters of the classifier performance are the
completeness and contamination. Following the definition used in
Bailer-Jones et al. (2008) we define the classification and complete-
ness for each class j as

Completeness j =
nk= j, j

Nk
(4.12)

Contamination j =

∑
k nk, j, j∑

k nk, j
(4.13)

where nk, j is the number of objects of true class k classified as class
j, Nk is the total number of objects of class k in the test set, nk= j, j

refers to correctly classified objects, nk, j, j includes all misclassified
objects for class j and

∑
k nk, j is the total number of objects classi-

fied (correctly or not) as class j.
These parameters are used to help select the optimum prob-

ability threshold for each class to achieve high robustness in the
classification results. However, as the relative fractions of objects of
different classes in the training set do not match the prior fractions
in Table 2 we adjust the calculation of contamination using weights
reflecting the relative frequency of class k over class j in the train-
ing set, f train

k/ j and the expected fraction during mission: f real
k/ j .

Contaminationw
j =

∑
k, j nk, j( f real

k/ j / f train
k/ j )∑

k nk, j( f real
k/ j / f train

k/ j )
(4.14)

It is then useful to introduce the concept of Purity since it defines
how reliable the classification is once we have provided a reliable
answer

Purityw
j = 1 − Contaminationw

j (4.15)

4.4 Parameter estimation

For some objects we will be interested not only in their class, but
also in their other properties, such as redshifts and epochs. To de-
termine these we use the posterior probability distributions for the
parameters of interest (redshift and epoch in our case), which are
in turn obtained by marginalizing over the remaining parameters:

P(z|D,M) =

∫
t

∫
AV

P(D,mG,v|t, z, AV ,M)P(θ|M) dt dAV (4.16)

P(t|D,M) =

∫
z

∫
AV

P(D,mG,v|t, z, AV ,M)P(θ|M) dz dAV (4.17)

The peak of the marginalized probability distribution is the
most likely value for the parameter of interest. To estimate the 1σ
errorbars on a (generally) non-Gaussian distribution is to make the
assumption that near the peak, the probability behaves as a Gaus-
sian. In this case we fit a second degree polynomial to the loga-
rithm of the probability distribution around the peak to provide an
estimate of σ (Lampton, Margon & Bowyer 1976).

5 TRANSIENT CLASSIFICATION RESULTS

5.1 Test Configuration description

The verification of our classification algorithm was done using a
K-fold cross-validation, with K = 10. The total set of spectra is
divided into 10 randomly selected non-overlapping sets, each one
containing 10% of the total sample. For each set the classifier is
trained with the remaining 90% of the spectra such that the same
spectra are never used together for testing and training. The results
of all 10 sets are then combined into a single set for analysis pur-
poses.

The main aim of this test is to assess the effect of magnitude
(primarily signal-to-noise) on the classification accuracy. However,
as the original magnitudes of the objects were not available in
the spectral archives, we estimated them from the object redshifts,
epochs and extinction values computed during the standardization
process described in Section 3.2. The resulting data set, as ex-
pected, contained very few spectra with bright magnitudes and low
redshift and many more spectra with faint magnitudes at higher red-
shift. In order to robustly assess how well the classifier performs at
different magnitudes with the same set of spectra, we artificially
shift the spectra to higher or lower redshifts. By varying the dis-
tance modulus of the object we can uniformly populate the mag-
nitude bins from 16 to 20. Tests with objects brighter than G=16
have shown similar characteristics to those with magnitude 16 and
therefore have been omitted.

The computing performance of the algorithm developed in the
pipeline is on average between 5 and 6 s per classification object
on a single core Intel (R) Core (TM) i7-2600 CPU 3.4GHz, which
makes it suitable for analysing around 10 000 transient alerts in less
than 2 hours in an 8 cored workstation.

5.2 Classification Accuracy

This section presents the results of our tests with magnitudes rang-
ing from G=16 to G=20. As noted in section 4.3, the classifica-
tion performance is assessed by two separate metrics: classification
completeness; and classification contamination. By observing how
these metrics behave for each class and magnitude we can choose
the optimum class probability thresholds, p, where the classifica-
tion is considered to be reliable. Transients with probabilities lower
than the threshold are marked as ambiguous cases and therefore left
unclassified; transients with higher probabilities are considered re-
liable classifications.

Figure 5 shows an example of this analysis for SNe type Ia
as a function of the class probability. The blue line represents the
completeness of the sample defined in equation 4.12 and the red
line the class contamination, defined in equation 4.13. Brighter
magnitudes have high completeness and low contamination lev-
els, even at low probability thresholds, due to the objects having
good signal-to-noise. For fainter objects misclassification increases
as more classes start to resemble the noisy spectra.

In our case we want to keep the contamination low and con-
sequently use a conservative probability threshold will introduce
less than 5% of contamination. Figure 5 (unsurprisingly) demon-
strates that contamination increases significantly with magnitude
and forces us to adopt an increasing probability threshold for SNe
type Ia from 0.5 at magnitude 16 to 0.9 at magnitude 20. For the re-
maining types of SNe, a selected threshold of 0.3 is enough to keep
the contamination below 5%. The selection threshold is different
for variable stars, as they are the biggest source of contamination
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c© 2014 RAS, MNRAS 000, 1–16



GS-TEC: the Gaia Spectrophotometry Transient Events Classifier 11

for SNe at bright magnitudes. Therefore, a higher threshold of 0.9
is used to select variable stars at magnitude 16, but only 0.5 on
faint magnitudes, when they no longer resemble SNe. We discuss
this contamination issue further ahead in this section.

Figure 6 shows the completeness of the classification and its
purity for each object type and magnitude. Completeness decreases
as objects become fainter and more of them become classified as
ambiguous sources. We observe that for bright sources at magni-
tude 16, almost all object types can be identified with an efficiency
of 70 to 90 %, as shown in Table 3.

Fainter objects generally have too low a signal-to-noise ratio
to give a reliable classification solely from the spectral shape, the
P(D,mG,v|θ,M) data component in equation 4.1. In these cases
the prior probability on the object model type P(M) becomes dom-
inant. In the faint magnitude regime, objects will generally only be
reliably classified if they are a very good match with the library
objects and also have a high prior probability.

The purity of the classification is strongly dependant on the
object type. For the most common type, SNe Ia, the purity is around
99% for almost all the magnitudes, as shown in Table 3. Any con-
tamination coming from less frequent classes has little effect. We
see the opposite for less common types, such as SNe Ibc which
spectrally resemble SNe Ia at early epochs (Filippenko 1997). This
class type may accidentally receive the label of SN Ia and given the
latter’s high frequency, the purity for SNe type Ibc will be consid-
erably lower.

For bright magnitudes some SNe Ia are confused with variable
stars. This is shown in the confusion matrices for the brighter mag-
nitudes 16 and 17 in Figure 7. This is due to objects with very weak
features, such as highly reddened SNe, or spectra with strong host
galaxy component. When these objects are at very low redshifts
they can look like variable stars.

SNe of magnitude 16 and 17 must be very nearby and accord-
ing to our priors, at such magnitudes variable stars are much more
likely than SNe, therefore a slightly lower efficiency for bright SNe
and a decreased purity for bright variable stars is expected. How-
ever, this stops being an issue at magnitudes 18 and higher, as spec-
tra for fainter SNe are noticeably redshifted becoming more distin-
guishable from the spectra of variable stars and therefore reducing
the misclassification rate.

At very faint magnitudes the information contained in the de-
tailed spectral shape is less dominant so that it becomes harder for
a given type to score above the probability threshold. In this regime
transients can be fit by black body spectra or other alternate types.
This effect can be observed in the confusion matrices for fainter
magnitudes in Figure 8 which show larger number of objects la-
belled as BB (black body) or Ambig (ambiguous).

At early epochs SNe type IIn usually have weak and narrow
Hα emission which is barely visible in the BP/RP spectrum. These
objects are often classified as black bodies as they generally lack
other major spectral features. For this reason, in the current work,
for both SNe type IIP and SNe type IIn at epochs younger than 5
days, a BB type was adopted as a valid answer.

For later epochs SNe type IIn are well classified, even at faint
magnitudes. These SNe generally develop very strong emission in
Hα . This line is well mapped by the red part of the spectrograph,
which also has slightly higher resolution than blue spectrograph,
and therefore this line can be still be identified even at low signal-
to-noise.

Purity can decrease at fainter magnitudes for SNe type IIP
since they resemble SNe IIn with both having strong Hα and Ca II
emission lines. In the low signal-to-noise regime the characteristic

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
True Redshift

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
st

im
a
te

d
 R

e
d

sh
if

t

SN Ia

SN Ibc

SN IIn

SN IIP

0 50 100 150
True Epoch

0

50

100

150

E
st

im
a
te

d
 E

p
o
ch

SN Ia

SN Ibc

SN IIn

SN IIP

Figure 9. Top: Scatter plot that shows the performance of redshift parame-
ter estimation. Estimated values for redshift (Y axis) are plotted against the
true values from the spectral archive (X axis). Star symbols represent false
positives for each labelled class. Bottom: Scatter plot that shows the perfor-
mance of epoch parameter estimation. Estimated values for the object epoch
(Y axis) are plotted against the true epoch values from the spectral archive
(X axis). Star symbols represent false positives for each labelled class.

wide p-Cygni profile of SNe IIP is not well recognized, especially
if the lines are relatively weak. Truncation of the test spectra can
also be a source of confusion among SNe IIP and SNe IIn, as the
Ca II emission line may be totally missing.

Due to the confusion of detailed spectral types mentioned
above we took the decision to offer a more general classification
answer, where we merge similar SNe subtypes and offer classifi-
cation labels such as SN I, SN II, STAR, AGN or BB, with higher
reliability. We present parameter estimates for these general types
as well.
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Classification efficiency

Mag SN Ia SN Ibc SN IIn SN IIP SN I SN II STAR

16.0 85.9 76.4 57.9 63.8 85.9 76.6 90.3
17.0 85.4 76.7 48.9 59.2 86.0 62.9 98.2
18.0 81.2 66.2 48.7 51.9 78.7 61.2 83.2
19.0 60.6 55.8 41.3 45.3 60.0 48.8 26.5
20.0 29.0 10.5 40.0 19.4 26.9 29.9 4.4

Classification purity

Mag SN Ia SN Ibc SN IIn SN IIP SN I SN II STAR

16.0 99.6 50.8 64.9 89.7 97.8 100.0 21.6
17.0 99.5 53.1 77.7 92.4 98.7 97.9 24.9
18.0 99.6 59.3 63.6 90.5 98.3 95.9 27.4
19.0 99.3 72.9 67.3 85.4 98.4 84.7 21.5
20.0 92.4 53.7 82.6 51.6 92.8 69.2 100.0

Table 3. Percentage classification efficiency and weighted purity for the cross-validation tests. Values are provided for individual types and for joined SNe
type I and SNe type II.

5.3 Parameter Estimation Accuracy

The parameter estimation accuracy is computed for each transient
class for all transients brighter than 19.5 magnitude. The results
for redshift and epoch determination are displayed in Figure 9. The
top plots show the true (X axis) and the estimated (Y axis) param-
eters for each individual object. Dots represent correctly classified
objects and stars refer to false positives for each class.

There are two noticeable effects in the redshift scatter dia-
gram. First, as expected, we see that for nearby objects the scatter
is lower since these objects generally are brighter and hence have
better signal-to-noise. Second, low redshift objects are more likely
to be misclassified because of the confusion with variable stars ex-
plained previously.

The scatter plot for epoch determination of epochs in Fig-
ure 9 also shows lower dispersion for early epochs. This is also
as expected since young objects normally evolve quickly allowing
a tighter constraint on their epoch.

Redshift is predicted with an accuracy of σz ' 0.008 for SNe
type II and σz ' 0.006 for SNe type I. The average error on epoch
is σt . 13 days for SNe type I, and around 31 days for SNe type II.
If we restrict selection to objects with epochs younger than 50 days
post maximum-light, the epoch scatter reduces to 8 and 30 days for
SNe type I and II respectively.

The outliers in redshift determination that appear in Figure 9
are generally misclassified objects. These are clearly a minority as
evinced by the error histogram distributions.

5.4 Accuracy with improved S/N

The results of the classification process are computed for single
transients. However, as shown in Figure 10, around 70% of sky will
have a second observation very close in time, generally 106 minutes
later. An additional 10% will have another observation around 4h
later. The data will be taken under similar conditions, instrument
configuration and scanning angle, therefore it is reasonable to test
how much the performance improves if we use stacked spectra in
order to improve the signal-to-noise ratio.

Tests with two stacked spectra show that although there is a
positive effect, this is quite small. Stacking has a slight positive
effect on the classification results: the efficiency increases between
5% and 10% for SN I and SN II, but it decreases for stars in the
faint end by around 10%. The purity generally improves for both
SNe and stars, specially at the faint end. However, this effect is
always below 10%.

The conclusion from this test is that while at brighter magni-
tudes stacking several spectra is not ultimately improving the re-
sults, for fainter objects which are going to be the majority, the
stacking process may improve the completeness and purity of the
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Figure 10. Probability of having a repeated Gaia observation on the same
field within δT days. Around 70% of the fields will be observed at least
twice with an interval of 106 min. Around 80% will be re-observed in less
than one day. The final fraction heavily increases after an interval of 30
days.

classification results. The improvement in parameter determination
is practically negligible.

6 APPLICATION TO PESSTO DATA

In the previous sections we described the Bayesian forward method
for Gaia SNe classification. We have also shown how the method
performs on the test set that we constructed. In this Section we
apply this method to the PESSTO transient dataset. This test is im-
portant, because it constitutes a separate validation test, carried on
data coming from a single source (EFOSC2 instrument on the NTT
telescope in La Silla).

One of the main goals of PESSTO is the identification of non-
standard transient objects (Valenti et al. 2014). Therefore, contin-
uous classification of new transients has been performed by the
PESSTO team since April 2012 (Valenti et al. (2012), Smartt et al.
(2013)). 1117 transients have been made available so far via the
WiseRep spectral data repository. However, we had to discard al-
most half of these because of insufficient wavelength coverage
together with uncertain classification labels, such as Other and
Unknown, leaving 507 spectra. Unfortunately, many objects have
spectra taken at only a single epoch and have no accurate estimate
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of the epoch parameter. Apparent magnitude in the optical bands
is often missing as well, as the photometry is done separately (for
follow-up objects), or is not done at all (for those classified objects
that have not been selected). As the apparent magnitude is an im-
portant parameter for GS-TEC we have estimated it from the flux
measurements of spectra with broad wavelength coverage using the
python package pysynphot and the Gaia G-band response.

The medium-resolution spectra from PESSTO were converted
to Gaia low-resolution spectra using these estimated magnitude
values. As some of the PESSTO targets were observed when their
magnitudes were too faint for Gaia, we applied a small blueshift
correction such that they could be included in the sample for test-
ing purposes.

6.1 Results for PESSTO data

We ran the GS-TEC code to classify the PESSTO targets generally
obtaining similar results to those from the cross-validation test. In
the PESSTO case the accuracy and purity have been extended to
magnitude G=15 as there were some objects populating that magni-
tude range. However, due to the low number of objects per class in
each magnitude bin, we decided to present the performance binned
in intervals of 2 magnitudes, instead of one.

Figure 11 shows the classification efficiency and purity. This
test is more realistic than the ones described previously as the qual-
ity of the spectra to be classified is directly associated with bright-
ness and redshift. As PESSTO transients were selected from a real-
istic survey we did not use the weights in the purity calculation, as
the ratio between objects belonging to different classes is already
implicit in the test sample.

On average we see that GS-TEC performs well in recognizing
the standard SNe types. However, the confusion matrices in Figure
12 and Figure 13 show some misclassified objects as well. Visual
inspection of the high resolution spectra for these problematic cases
shows that these happen in the case of specific particular types (SNe
91bg for example), narrow emission lines or poor signal-to-noise
in the original high-resolution spectra. This demonstrate that our
system provides a useful tool to recognize the most standard SNe
types and to estimate their redshifts.

Parameter estimation for the PESSTO dataset can only test
the redshift estimation as there is no reliable information available
on the object epoch. Figure 14 shows the redshift estimation. The
tests show that it can be retrieved with an accuracy of σz 6 0.008
for SNe type II and σz 6 0.013 for SNe type I. The scatter plot
shows that the redshift, specially on the faint end, is slightly bi-
ased towards lower values. This can be explained by the fact that
the magnitude estimation method used slightly overestimates the
magnitude of the transients.

7 DISCUSSION

7.1 Possible improvements during the mission

The use of ancillary data from the Gaia Science Alerts process al-
lows the possibility of including additional information on the ob-
ject, such as the previous classification in the case of longer term
variable objects, colors in additional bands and the object environ-
ment, for example presence of a nearby galaxy, its type and color.
In this context, although GS-TEC can be understood as an inde-
pendent system it can readily be used to contrast, complement and
expand the information provided by parallel modules.

Moreover, the Gaia deterministic scanning law makes it easy
to check the last date when the satellite was pointing at the transient
location giving the last non-detection time. That information can be
used to set an upper limit for the transient epoch and help to restrict
the parameter space.

Finally, the most important improvement will come after sev-
eral months of data compilation in the Gaia format, when the newly
acquired data, once confirmed by the ground based follow-up re-
sources, will be added to the reference library. This new data will
gradually create the ultimate training set for GS-TEC. Having a big
training set with real (not simulated) data format is expected to pro-
vide highest improvement for the classification performance (Brink
et al. 2013).

7.2 Comparison with other classifiers

Spectral SNe classification is not a new problem. There are sev-
eral high resolution SNe SED classifiers, such as SNID: Blondin
& Tonry (2011), GELATO (Harutyunyan et al. 2008) or Superfit
(Howell et al. 2005). These codes base their classification strategy
on comparing the input medium-high resolution spectra with a col-
lection of individual object spectra. The core approach for these
codes is to fit and subtract a continuum to remove the possible
flux calibration and reddening effects and compare the remaining
lines. In order to use these codes the spectra need to have enough
signal-to-noise and resolution to distinguish the main spectral fea-
tures. This kind of approach is difficult to apply to a case like Gaia,
where the spectral resolution is variable, the spectra are segmented
into two parts and the median signal-to-noise is around 10 for mag-
nitude 17 and 2 for the fainter 20 mag. It is untenable to use these
approaches, or even a similar strategy, for Gaia transient classi-
fication. Provisional tests indicate that these kind of solutions only
work for very good signal-to-noise spectra with magnitudes around
16 or 17.

In contrast, GS-TEC has been designed to work within the
Gaia instrumental reference framework, whereby the continuum
shape of the spectrum plays an important role. Our approach also
make use of additional information, such as the object magnitude
and generic class type characteristics to achieve a more robust solu-
tion. Our main goal is to create an automated discovery and identifi-
cation process for the most common, and standard, transient types,
leaving ground-based follow-up to provide additional information
about possibly interesting ambiguous or black-body-like spectra.

8 SUMMARY AND CONCLUSIONS

We have presented an algorithm for processing Gaia low-resolution
spectrophotometric data that is capable of estimating the main class
of a transient event and some of its non-intrinsic parameters, such
as the redshift and epoch of the explosion. The algorithm has been
tested on a set of ground-based observations which presented high
heterogeneity among types and epochs.

The conclusion from the current work are summarized as fol-
lows:

• Gaia low-resolution spectrophotometric and broadband pho-
tometric data, coupled with realistic priors, carries enough infor-
mation to be used for classification of transients;
• GS-TEC has proven to be an efficient independent module to

obtain accurate information on transient class and parameters par-
ticularly for SNe having standard spectral shapes and strong fea-
tures;
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Figure 11. Top left: Classification completeness (efficiency) as a function of magnitude for each individual class for the PESSTO dataset. Top right: Classi-
fication purity as a function of magnitude and class. Bottom left: Classification completeness as a function of magnitude for the two main SNe subtypes for
the PESSTO dataset. Bottom right: Classification purity as a function of magnitude and class for the two main SNe subtypes for the PESSTO dataset. The
generally disjoint behaviour of the curves is due to the low number of objects per magnitude bin for the PESSTO dataset.

• the efficiency of classification is 85% at the bright end for SNe
type I and 76% for SNe type II. However, it decreases to 60% and
48% respectively for magnitude 19. Class purity is 98% and 90%
at the bright end for SNe type I and SNe type II, then it decreases
to 95% and 84% for objects at magnitude 19;
• redshifts for both main types of SNe can be predicted with an

accuracy σz . 0.01;
• the main source of confusion at bright magnitudes are variable

stars. However, this should not be a major problem since nearby
SNe are a minority, and they will be promptly discovered and char-
acterized by ground-based observing facilities;
• for fainter magnitudes the highest confusion comes from

within similar SNe types, the group SN I and SN II, as they have
similar spectral features and which cause confusion at low signal-
to-noise. Providing a more general classification type increases our
confidence in the result.

Ground-based surveys that collaborate with Gaia will benefit
from our module as it will provide additional information on the
transient object nature, which may enable more efficient filtering
of alerts and therefore better resource allocation for follow-up.
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Figure 12. Confusion matrices for the bright end. The X axis represents the class type predicted by the classifier and the Y axis represents the true type. The
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dataset. Estimated values for redshift are plotted against the true values from
the spectral archive.
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