8 research outputs found

    Shear strengthening of full-scale RC T-beams using textile-reinforced mortar and textile-based anchors

    Get PDF
    This paper presents a study on the effectiveness of TRM jacketing in shear strengthening of full-scale reinforced concrete (RC) T-beams focussing on the behaviour of a novel end-anchorage system comprising textile-based anchors. The parameters examined in this study include: (a) the use of textile-based anchors as end-anchorage system of TRM U-jackets; (b) the number of TRM layers; (c) the textile properties (material, geometry); and (d) the strengthening system, namely textile-reinforced mortar (TRM) jacketing and fibre-reinforced polymer (FRP) jacketing for the case without anchors. In total, 11 full-scale RC T-beams were constructed and tested as simply supported in three-point bending. The results showed that: (a) The use of textile-based anchors increases dramatically the effectiveness of TRM U-jackets; (b) increasing the number of layers in non-anchored jackets results in an almost proportional increase of the shear capacity, whereas the failure mode is altered; (c) the use of different textile geometries with the same reinforcement ratio in non-anchored jackets result in practically equal capacity increase; (d) TRM jackets can be as effective as FRP jackets in increasing the shear capacity of full-scale RC T-beams. Finally, a simple design model is proposed to calculate the contribution of anchored TRM jackets to the shear capacity of RC T-beams

    Bond between textile-reinforced mortar (TRM) and concrete substrates: experimental investigation

    Get PDF
    This paper presents an extended experimental study on the bond behaviour between textile-reinforced mortar (TRM) and concrete substrates. The parameters examined include: (a) the bond length (from 50 mm to 450 mm); (b) the number of TRM layers (from one to four); (c) the concrete surface preparation (grinding versus sandblasting); (d) the concrete compressive strength (15 MPa or 30 MPa); (e) the textile coating; and (f) the anchorage through wrapping with TRM jackets. For this purpose, a total of 80 specimens were fabricated and tested under double-lap direct shear. It is mainly concluded that: (a) after a certain bond length (between 200 mm and 300 mm for any number of layers) the bond strength marginally increases; (b) by increasing the number of layers the bond capacity increases in a non-proportional way, whereas the failure mode is altered; (c) concrete sandblasting is equivalent to grinding in terms of bond capacity and failure mode; (d) concrete compressive strength has a marginal effect on the bond capacity; (e) the use of coated textiles alters the failure mode and significantly increases the bond strength; and (f) anchorage of TRM through wrapping with TRM jackets substantially increases the ultimate load capacity

    Flexural Strengthening of Two-Way RC Slabs with Textile-Reinforced Mortar: Experimental Investigation and Design Equations

    Get PDF
    The application of textile-reinforced mortar (TRM) as a means of increasing the flexural capacity of two-way reinforced concrete (RC) slabs is experimentally investigated in this study. The parameters examined include the number of TRM layers, the strengthening configuration, the textile fibers material (carbon versus glass), and the role of initial cracking in the slab. For this purpose six largescale RC slabs were built and tested to failure under monotonic loading distributed at four points. It is concluded that TRM increases substantially the precracking stiffness, the cracking load, the postcracking stiffness, and eventually the flexural capacity of two-way RC slabs, whereas the strengthening configuration plays an important role in the effectiveness of the technique. Simple design equations that provide good estimation of the experimental flexural moment of resistance are proposed

    Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams

    Get PDF
    The aim of this paper is to compare the flexural performance of reinforced concrete (RC) beams strengthened with textile-reinforced mortar (TRM) and fibre-reinforced polymers (FRP). The investigated parameters included the strengthening material, namely TRM or FRP; the number of TRM/FRP layers; the textile surface condition (coated and uncoated); the textile fibre material (carbon, coated basalt or glass fibres); and the end-anchorage system of the external reinforcement. Thirteen RC beams were fabricated, strengthened and tested in four-point bending. One beam served as control specimen, seven beams strengthened with TRM, and five with FRP. It was mainly found that: (a) TRM was generally inferior to FRP in enhancing the flexural capacity of RC beams, with the effectiveness ratio between the two systems varying from 0.46 to 0.80, depending on the parameters examined, (b) by tripling the number of TRM layers (from one to three), the TRM versus FRP effectiveness ratio was almost doubled, (c) providing coating to the dry textile enhanced the TRM effectiveness and altered the failure mode; (d) different textile materials, having approximately same axial stiffness, resulted in different flexural capacity increases; and (e) providing end-anchorage had a limited effect on the performance of TRM-retrofitted beams. Finally, a simple formula proposed by fib Model Code 2010 for FRP reinforcement was used to predict the mean debonding stress developed in the TRM reinforcement. It was found that this formula is in a good agreement with the average stress calculated based on the experimental results when failure was similar to FRP-strengthened beams

    Textile-reinforced mortar (TRM) versus fiber-reinforced polymers (FRP) in shear strengthening of concrete beams

    Get PDF
    This paper presents an experimental study on shear strengthening of rectangular reinforced concrete (RC) beams with advanced composite materials. Key parameters of this study include: (a) the strengthening system, namely textile-reinforced mortar (TRM) jacketing and fiber-reinforced polymer (FRP) jacketing, (b) the strengthening configuration, namely side-bonding, U-wrapping and full-wrapping, and (c) the number of the strengthening layers. In total, 14 RC beams were constructed and tested under bending loading. One of the beams did not receive any strengthening and served as control beam, eight received TRM jacketing, whereas the rest five received FRP jacketing. It is concluded that the TRM is generally less effective than FRP in increasing the shear capacity of concrete, however the effectiveness depends on both the strengthening configuration and the number of layers. U-wrapping strengthening configuration is much more effective than side-bonding in case of TRM jackets and the effectiveness of TRM jackets increases considerably with increasing the number of layers

    Shear strengthening of concrete members with TRM jackets: Effect of shear span-to-depth ratio, material and amount of external reinforcement

    Get PDF
    An experimental work on reinforced concrete (RC) rectangular beams strengthened in shear with textile reinforced mortar (TRM) jackets is presented in this paper, with focus on the following investigated parameters: (a) the amount of external TRM reinforcement ratio, Ļf, by means of using different number of textile layers and different types of textile fibre materials (carbon, glass, basalt); (b) the textile geometry, and (c) the shear span-to-depth ratio, a/d. In total, 22 tests were conducted on simply supported rectangular RC beams under (three-point bending) monotonic loading. The experimental results revealed that: (1) TRM is very effective when the failure is attributed to debonding of the TRM jacket from the concrete substrate; (2) the trend of effective strains for carbon, glass and basalt TRM jackets is descending for increasing values of the TRM reinforcement ratio, Ļf, when failure is associated to debonding of the jacket; (3) the effect of textile geometry is significant only for low values of Ļf, resulting in variances in the capacity enhancement and the failure modes, and (4) the shear span-to-depth ratio has practically no effect to the failure mode nor to the TRM jacket contribution to the total shear resistance of the RC beams

    Mechanical Properties of Rubberised Concrete Confined with Basalt-Fibre Textile-Reinforced Mortar Jackets

    No full text
    This paper presents an experimental investigation of the mechanical properties of rubberised concrete confined with basalt-fibre textile-reinforced mortar (TRM) jackets. The main aim is to evaluate the effectiveness of the TRM confinement scheme on cylindrical rubberised concrete specimens by examining five different mixtures (rubber content ranging from 10.5% up to 42% of the total aggregate volume), including a plain concrete reference mixture. Unconfined and confined specimens with either one or two TRM layers were subjected to monotonic axial loading. The results indicate a decrease in the compressive strength of unconfined concrete as the rubber content increased. The stress–strain curves of rubberised concrete became smoother at the peak as the rubber content increased, also exhibiting increased axial strain capacity post-peak. Rubberised concrete exhibited less brittle failure than plain concrete, accompanied by increased lateral dilation. Confinement with TRM increased the compressive strength, while also enhanced the performance in terms of toughness and axial deformation capacity compared to unconfined concrete. Overall, it is concluded that there is a promising potential for using TRM-confined rubberised concrete in applications with ductility demands and low environmental footprint specifications
    corecore