241 research outputs found

    Native RNA Purification Method for Small RNA Molecules Based on Asymmetrical Flow Field-Flow Fractionation

    Get PDF
    RNA molecules provide promising new possibilities for the prevention and treatment of viral infections and diseases. The rapid development of RNA biology and medicine requires advanced methods for the purification of RNA molecules, which allow fast and efficient RNA processing, preferably under non-denaturing conditions. Asymmetrical flow field-flow fractionation (AF4) enables gentle separation and purification of macromolecules based on their diffusion coefficients. The aim of the study was to develop an AF4 method for efficient purification of enzymatically produced antiviral small interfering (si)RNA molecules and to evaluate the overall potential of AF4 in the separation of short single-stranded (ss) and double-stranded (ds) RNA molecules. We show that AF4 separates monomeric ssRNA from dsRNA molecules of the same size and monomeric ssRNA from multimeric forms of the same ssRNA. The developed AF4 method enabled the separation of enzymatically produced 27-nt siRNAs from partially digested substrate dsRNA, which is potentially toxic for mammalian cells. The recovery of AF4-purified enzymatically produced siRNA molecules was about 70%, which is about 20% higher than obtained using anion-exchange chromatography. The AF4-purified siRNAs were not toxic for mammalian cells and fully retained their biological activity as confirmed by efficient inhibition of herpes simplex virus 1 replication in cell culture. Our work is the first to develop AF4 methods for the separation of short RNA molecules

    Healthy people in healthy premises: the Finnish Indoor Air and Health Programme 2018-2028

    Get PDF
    Clean and fresh indoor air supports health and well-being. However, indoor air can contain pollutants that can cause a variety of symptoms and reduce well-being. Individual exposure agents can also increase the risk of certain diseases. Finns have taken major steps to improve the quality of indoor air for several decades. The primary focus of these activities has been the prevention and reduction of exposure to poor indoor air quality through guidance and regulation directing remediation of damaged buildings. Nevertheless, reported symptoms related to poor indoor air quality are common in Finland. In addition to exposure to indoor air pollutants, this may be partly due to the lively public discussion on the health risks caused by poor indoor air quality, conflicting views between experts, and mistrust towards public authorities, building owners and builders. Because of the scale of the indoor air problems in Finland, people's needs for reliable information and support, and the major costs involved, there is a call for new evidence-based methods, perspectives and solutions. Therefore, the Finnish Institute for Health and Welfare initiated the Finnish Indoor Air and Health Programme 2018-2028 together with a number of collaborators and stakeholders. The primary, long-term objective of the programme is to reduce hazards to health and well-being linked to indoor environments in Finland. To fulfill this objective, the programme will focus on the promotion of human health and well-being, the prevention of hazards, improved communication and engage the whole health-care sector to manage better patients ' symptoms and complaints. The 10-year Finnish Indoor Air and Health Programme consists of four areas that aim (1) to increase understanding of the effects of indoor environments on health and well-being; (2) to develop the management of problems linked to indoor environments; (3) to improve the treatment and working and functional capacity of people with symptoms and illnesses; and (4) to strengthen the competence in matters related to indoor environments. The progress of the programme and reaching the predefined, quantitative goals will be monitored throughout the programme

    Test-retest repeatability of child's respiratory symptoms and perceived indoor air quality - comparing self-and parent-administered questionnaires

    Get PDF
    Background: Questionnaires can be used to assess perceived indoor air quality and symptoms in schools. Questionnaires for primary school aged children have traditionally been parent-administered, but self-administered questionnaires would be easier to administer and may yield as good, if not better, information. Our aim was to compare the repeatability of self- and parent-administered indoor air questionnaires designed for primary school aged pupils. Methods: Indoor air questionnaire with questions on child's symptoms and perceived indoor air quality in schools was sent to parents of pupils aged 7-12 years in two schools and again after two weeks. Slightly modified version of the questionnaire was administered to pupils aged 9-12 years in another two schools and repeated after a week. 351 (52%) parents and 319 pupils (86%) answered both the first and the second questionnaire. Test-retest repeatability was assessed with intra-class correlation (ICC) and Cohen's kappa coefficients (k). Results: Test-retest repeatability was generally between 0.4-0.7 (ICC; k) in both self-and parent-administered questionnaire. In majority of the questions on symptoms and perceived indoor air quality test-retest repeatability was at the same level or slightly better in self-administered compared to parent-administered questionnaire. Agreement of self-and parent administered questionnaires was generally <0.4 (ICC; k) in reported symptoms and 0.4-0.6 (ICC; k) in perceived indoor air quality. Conclusions: Children aged 9-12 years can give as, or even more, repeatable information about their respiratory symptoms and perceived indoor air quality than their parents. Therefore, it may be possible to use self-administered questionnaires in future studies also with children.Peer reviewe

    Mechanism of the Very Efficient Quenching of Tryptophan Fluorescence in Human γD- and γS-Crystallins: The γ-Crystallin Fold May Have Evolved To Protect Tryptophan Residues from Ultraviolet Photodamage†

    Get PDF
    Proteins exposed to UV radiation are subject to irreversible photodamage through covalent modification of tryptophans (Trps) and other UV-absorbing amino acids. Crystallins, the major protein components of the vertebrate eye lens that maintain lens transparency, are exposed to ambient UV radiation throughout life. The duplicated β-sheet Greek key domains of β- and γ-crystallins in humans and all other vertebrates each have two conserved buried Trps. Experiments and computation showed that the fluorescence of these Trps in human γD-crystallin is very efficiently quenched in the native state by electrostatically enabled electron transfer to a backbone amide [Chen et al. (2006) Biochemistry 45, 11552−11563]. This dispersal of the excited state energy would be expected to minimize protein damage from covalent scission of the excited Trp ring. We report here both experiments and computation showing that the same fast electron transfer mechanism is operating in a different crystallin, human γS-crystallin. Examination of solved structures of other crystallins reveals that the Trp conformation, as well as favorably oriented bound waters, and the proximity of the backbone carbonyl oxygen of the n − 3 residues before the quenched Trps (residue n), are conserved in most crystallins. These results indicate that fast charge transfer quenching is an evolved property of this protein fold, probably protecting it from UV-induced photodamage. This UV resistance may have contributed to the selection of the Greek key fold as the major lens protein in all vertebrates.National Eye Institute (Grant EY 015834

    Cataract-Causing Defect of a Mutant γ-Crystallin Proceeds through an Aggregation Pathway Which Bypasses Recognition by the α-Crystallin Chaperone

    Get PDF
    Background: The transparency of the eye lens depends upon maintenance of the native state of the γ- and β-crystallins, which is aided by the abundant chaperones αA- and αB-crystallin. Mature onset cataract, the leading cause of blindness worldwide, involves the polymerization of covalently damaged or partially unfolded crystallins into light-scattering aggregates. A number of single amino acid substitutions and truncations of γ-crystallins result in congenital cataract in both humans and mice, though in many cases the coupling between the protein alterations and the accumulation of aggregates is poorly defined. Methodology/Principal Findings: We have studied the aggregation properties and chaperone interactions of human γD-crystallin carrying substitutions of two buried core mutants, I90F and V75D, which cause congenital cataract in mice. The in vitro aggregation pathway competing with productive refolding was not altered by either substitution. Furthermore, this aggregation pathway for both mutant proteins–originating from a partially folded intermediate–was efficiently suppressed by αB-crystallin. Thus the cataract pathology was unlikely to be associated with a direct folding defect. The native state of wild-type human γD-crystallin exhibited no tendency to aggregate under physiological conditions. However both I90F and V75D native-like proteins exhibited slow (days) aggregation to high molecular weight aggregates under physiological conditions. The perturbed conformation of I90F was recognized and bound by both αA and αB chaperones. In contrast, the aggregation derived from the perturbed state of V75D was not suppressed by either chaperone, and the aggregating species were not bound by the chaperone. Conclusions/Significance: The cataract phenotype of I90F in mice may be due to premature saturation of the finite α- crystallin pool. The V75D aggregation pathway and its escape from chaperone surveillance and aggregation suppression can account for the congenital cataract pathology of this mutant. Failure of chaperone recognition may be an important source of pathology for many other protein folding defects.National Eye Institute (Grant no. EY015834 )National Institutes of Health (U.S.) (Grant no. GM17980

    Mouse antibody of IgM class is prone to non-enzymatic cleavage between CH1 and CH2 domains

    Get PDF
    Abstract IgM is a multivalent antibody which evolved as a first line defense of adaptive immunity. It consists of heavy and light chains assembled into a complex oligomer. In mouse serum there are two forms of IgM, a full-length and a truncated one. The latter contains μ’ chain, which lacks a variable region. Although μ’ chain was discovered many years ago, its origin has not yet been elucidated. Our results indicate that μ’ chain is generated from a full-length heavy chain by non-enzymatic cleavage of the protein backbone. The cleavage occurred specifically after Asn209 and is prevented by mutating this residue into any other amino acid. The process requires the presence of other proteins, preferentially with an acidic isoelectric point, and is facilitated by neutral or alkaline pH. This unique characteristic of the investigated phenomenon distinguishes it from other, already described, Asn-dependent protein reactions. A single IgM molecule is able to bind up to 12 epitopes via its antigen binding fragments (Fabs). The cleavage at Asn209 generates truncated IgM molecules and free Fabs, resulting in a reduced IgM valence and probably affecting IgM functionality in vivo
    corecore