55 research outputs found

    Magnetic field in magnetosheath jets: a statistical study of B-Z near the magnetopause

    Get PDF
    Magnetosheath jets travel from the bow shock toward the magnetopause, and some of them eventually impact it. Jet impacts have recently been linked to triggering magnetopause reconnection in case studies by Hietala et al. (2018, https://doi.org/10.1002/2017gl076525) and Nykyri et al. (2019, https://doi.org/10.1029/2018ja026357). In this study, we focus on the enhancing or suppressing effect jets could have on reconnection by locally altering the magnetic shear via their own magnetic fields. Using observations from the years 2008–2011 made by the Time History of Events and Macroscale Interactions during Substorms spacecraft and solar wind OMNI data, we statistically study for the first time urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0002 within jets in the Geocentric Solar Magnetospheric coordinates. We find that urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0003 opposite to the prevailing interplanetary magnetic field (IMF) urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0004 is roughly as common in jets as in the non-jet magnetosheath near the magnetopause, but these observations are distributed differently. 60–70% of jet intervals contain bursts of opposite polarity urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0005 in comparison to around 40urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0006 of similar non-jet intervals. The median duration of such a burst in jets is 10 s and strength is urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0007nT. We also investigate the prevalence of the type of strong urn:x-wiley:21699380:media:jgra56695:jgra56695-math-0008nT pulses that Nykyri et al. (2019, https://doi.org/10.1029/2018ja026357) linked to a substorm onset. In our data set, such pulses were observed in around 13% of jets. Our statistical results indicate that jets may have the potential to affect local magnetopause reconnection via their magnetic fields. Future studies are needed to determine whether such effects can be observed

    稲垣足穂『少年愛の美学』の読書論的研究 --念者としての語り--

    Get PDF
    千葉大学大学院人文社会科学研究科研究プロジェクト報告書第144集 『パフォーマンスの民族誌的研究』橋本裕之

    Magnetosheath jet occurrence rate in relation to CMEs and SIRs

    Get PDF
    Magnetosheath jets constitute a significant coupling effect between the solar wind (SW) and the magnetosphere of the Earth. In order to investigate the effects and forecasting of these jets, we present the first-ever statistical study of the jet production during large-scale SW structures like coronal mass ejections (CMEs), stream interaction regions (SIRs) and high speed streams (HSSs). Magnetosheath data from Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft between January 2008 and December 2020 serve as measurement source for jet detection. Two different jet definitions were used to rule out statistical biases induced by our jet detection method. For the CME and SIR + HSS lists, we used lists provided by literature and expanded on incomplete lists using OMNI data to cover the time range of May 1996 to December 2020. We find that the number and total time of observed jets decrease when CME-sheaths hit the Earth. The number of jets is lower throughout the passing of the CME-magnetic ejecta (ME) and recovers quickly afterward. On the other hand, the number of jets increases during SIR and HSS phases. We discuss a few possibilities to explain these statistical results

    AR-quiver approach to affine canonical basis elements

    Get PDF
    AbstractThis is the continuation of [Y. Li, Affine quivers of type A˜n and canonical bases, math.QA/0501175]. We describe the affine canonical basis elements in the case when the affine quiver has arbitrary orientation. This generalizes the description in [G. Lusztig, Affine quivers and canonical bases, Publ. Math. Inst. Hautes Études Sci. 76 (1992) 111–163]

    Interferon-γ Regulates the Proliferation and Differentiation of Mesenchymal Stem Cells via Activation of Indoleamine 2,3 Dioxygenase (IDO)

    Get PDF
    The kynurenine pathway (KP) of tryptophan metabolism is linked to antimicrobial activity and modulation of immune responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells (MSCs and NSCs) express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO) and IDO2, that it is highly regulated by type I (IFN-β) and II interferons (IFN-γ), and that its transcriptional modulation depends on the type of interferon, cell type and species. IFN-γ inhibited proliferation and altered human and mouse MSC neural, adipocytic and osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation

    HIV-1 Tat Co-Operates with IFN-γ and TNF-α to Increase CXCL10 in Human Astrocytes

    Get PDF
    HIV-associated neurological disorders (HAND) are estimated to affect 60% of the HIV infected population. HIV-encephalitis (HIVE), the pathological correlate of the most severe form of HAND is often characterized by glial activation, cytokine/chemokine dysregulation, and neuronal damage and loss. However, the severity of HIVE correlates better with glial activation rather than viral load. One of the characteristic features of HIVE is the increased amount of the neurotoxic chemokine, CXCL10. This chemokine can be released from astroglia activated with the pro-inflammatory cytokines IFN-γ and TNF-α, in conjunction with HIV-1 Tat, all of which are elevated in HIVE. In an effort to understand the pathogenesis of HAND, this study was aimed at exploring the regulation of CXCL10 by cellular and viral factors during astrocyte activation. Specifically, the data herein demonstrate that the combined actions of HIV-1 Tat and the pro-inflammatory cytokines, IFN-γ and TNF-α, result in the induction of CXCL10 at both the RNA and protein level. Furthermore, CXCL10 induction was found to be regulated transcriptionally by the activation of the p38, Jnk, and Akt signaling pathways and their downstream transcription factors, NF-κB and STAT-1α. Since CXCL10 levels are linked to disease severity, understanding its regulation could aid in the development of therapeutic intervention strategies for HAND

    Mesodermal fate decisions of a stem cell: the Wnt switch

    Get PDF
    Stem cells are a powerful resource for cell-based transplantation therapies in osteodegenerative disorders, but before some kinds of stem cells can be applied clinically, several aspects of their expansion and differentiation need to be better controlled. Wnt molecules and members of the Wnt signaling cascade have been ascribed a role in both these processes in vitro as well as normal development in vivo. However some results are controversial. In this review we will present the hypothesis that both canonical and non-canonical signaling are involved in mesenchymal cell fate regulation, such as adipogenesis, chondrogenesis and osteogenesis, and that in vitro it is a timely switch between the two that specifies the identity of the differentiating cell. We will specifically focus on the in vitro differentiation of adipocytes, chondrocytes and osteoblasts contrasting embryonic and mesenchymal stem cells as well as the role of Wnts in mesenchymal fate specification during embryogenesis

    Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    Get PDF
    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction

    Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    Get PDF
    BACKGROUND: Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION: A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY: A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons
    corecore