31 research outputs found

    Post-translational modifications in DNA topoisomerase 2α highlight the role of a eukaryote-specific residue in the ATPase domain

    Get PDF
    Type 2 DNA topoisomerases (Top2) are critical components of key protein complexes involved in DNA replication, chromosome condensation and segregation, as well as gene transcription. The Top2 were found to be the main targets of anticancer agents, leading to intensive efforts to understand their functional and physiological role as well as their molecular structure. Post-translational modifications have been reported to influence Top2 enzyme activities in particular those of the mammalian Top2α isoform. In this study, we identified phosphorylation, and for the first time, acetylation sites in the human Top2α isoform produced in eukaryotic expression systems. Structural analysis revealed that acetylation sites are clustered on the catalytic domains of the homodimer while phosphorylation sites are located in the C-terminal domain responsible for nuclear localization. Biochemical analysis of the eukaryotic-specific K168 residue in the ATPase domain shows that acetylation affects a key position regulating ATP hydrolysis through the modulation of dimerization. Our findings suggest that acetylation of specific sites involved in the allosteric regulation of human Top2 may provide a mechanism for modulation of its catalytic activity.Facultad de Ciencias ExactasInstituto de Física de Líquidos y Sistemas Biológico

    Post-translational modifications in DNA topoisomerase 2α highlight the role of a eukaryote-specific residue in the ATPase domain

    Get PDF
    Type 2 DNA topoisomerases (Top2) are critical components of key protein complexes involved in DNA replication, chromosome condensation and segregation, as well as gene transcription. The Top2 were found to be the main targets of anticancer agents, leading to intensive efforts to understand their functional and physiological role as well as their molecular structure. Post-translational modifications have been reported to influence Top2 enzyme activities in particular those of the mammalian Top2α isoform. In this study, we identified phosphorylation, and for the first time, acetylation sites in the human Top2α isoform produced in eukaryotic expression systems. Structural analysis revealed that acetylation sites are clustered on the catalytic domains of the homodimer while phosphorylation sites are located in the C-terminal domain responsible for nuclear localization. Biochemical analysis of the eukaryotic-specific K168 residue in the ATPase domain shows that acetylation affects a key position regulating ATP hydrolysis through the modulation of dimerization. Our findings suggest that acetylation of specific sites involved in the allosteric regulation of human Top2 may provide a mechanism for modulation of its catalytic activity.Fil: Bedez, Claire. Université de Strasbourg; FranciaFil: Lotz, Christophe. Université de Strasbourg; FranciaFil: Batisse, Claire. Université de Strasbourg; FranciaFil: Broeck, Arnaud Vanden. Université de Strasbourg; FranciaFil: Stote, Roland H.. Université de Strasbourg; FranciaFil: Howard, Eduardo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Pradeau-Aubreton, Karine. Université de Strasbourg; FranciaFil: Ruff, Marc. Université de Strasbourg; FranciaFil: Lamour, Valérie. Université de Strasbourg; Franci

    The human RNA polymerase I structure reveals an HMG-like docking domain specific to metazoans

    Get PDF
    Transcription of the ribosomal RNA precursor by RNA polymerase (Pol) I is a major determinant of cellular growth, and dysregulation is observed in many cancer types. Here, we present the purification of human Pol I from cells carrying a genomic GFP fusion on the largest subunit allowing the structural and functional analysis of the enzyme across species. In contrast to yeast, human Pol I carries a single-subunit stalk, and in vitro transcription indicates a reduced proofreading activity. Determination of the human Pol I cryo-EM reconstruction in a close-to-native state rationalizes the effects of disease-associated mutations and uncovers an additional domain that is built into the sequence of Pol I subunit RPA1. This “dock II” domain resembles a truncated HMG box incapable of DNA binding which may serve as a downstream transcription factor–binding platform in metazoans. Biochemical analysis, in situ modelling, and ChIP data indicate that Topoisomerase 2a can be recruited to Pol I via the domain and cooperates with the HMG box domain–containing factor UBF. These adaptations of the metazoan Pol I transcription system may allow efficient release of positive DNA supercoils accumulating downstream of the transcription bubble

    The interplay between DNA topoisomerase 2α post-translational modifications and drug resistance

    No full text
    The type 2 DNA topoisomerases (Top2) are conserved enzymes and biomarkers for cell proliferation. The catalytic activities of the human isoform Top2α are essential for the regulation of DNA topology during DNA replication, transcription, and chromosome segregation. Top2α is a prominent target for anti-cancer drugs and is highly regulated by post-translational modifications (PTM). Despite an increasing number of proteomic studies, the extent of PTM in cancer cells and its importance in drug response remains largely uncharacterized. In this review, we highlight the different modifications affecting the human Top2α in healthy and cancer cells, taking advantage of the structure-function information accumulated in the past decades. We also overview the regulation of Top2α by PTM, the level of PTM in cancer cells, and the resistance to therapeutic compounds targeting the Top2 enzyme. Altogether, this review underlines the importance of future studies addressing more systematically the interplay between PTM and Top2 drug resistance

    What’s on the Other Side of the Gate: A Structural Perspective on DNA Gate Opening of Type IA and IIA DNA Topoisomerases

    No full text
    DNA topoisomerases have an essential role in resolving topological problems that arise due to the double-helical structure of DNA. They can recognise DNA topology and catalyse diverse topological reactions by cutting and re-joining DNA ends. Type IA and IIA topoisomerases, which work by strand passage mechanisms, share catalytic domains for DNA binding and cleavage. Structural information has accumulated over the past decades, shedding light on the mechanisms of DNA cleavage and re-ligation. However, the structural rearrangements required for DNA-gate opening and strand transfer remain elusive, in particular for the type IA topoisomerases. In this review, we compare the structural similarities between the type IIA and type IA topoisomerases. The conformational changes that lead to the opening of the DNA-gate and strand passage, as well as allosteric regulation, are discussed, with a focus on the remaining questions about the mechanism of type IA topoisomerases

    ATP-Bound Conformation of Topoisomerase IV: a Possible Target for Quinolones in Streptococcus pneumoniae

    No full text
    Topoisomerase IV, a C(2)E(2) tetramer, is involved in the topological changes of DNA during replication. This enzyme is the target of antibacterial compounds, such as the coumarins, which target the ATP binding site in the ParE subunit, and the quinolones, which bind, outside the active site, to the quinolone resistance-determining region (QRDR). After site-directed and random mutagenesis, we found some mutations in the ATP binding site of ParE near the dimeric interface and outside the QRDR that conferred quinolone resistance to Streptococcus pneumoniae, a bacterial pathogen. Modeling of the N-terminal, 43-kDa ParE domain of S. pneumoniae revealed that the most frequent mutations affected conserved residues, among them His43 and His103, which are involved in the hydrogen bond network supporting ATP hydrolysis, and Met31, at the dimeric interface. All mutants showed a particular phenotype of resistance to fluoroquinolones and an increase in susceptibility to novobiocin. All mutations in ParE resulted in resistance only when associated with a mutation in the QRDR of the GyrA subunit. Our models of the closed and open conformations of the active site indicate that quinolones preferentially target topoisomerase IV of S. pneumoniae in its ATP-bound closed conformation

    Crystallization of the 43 kDa ATPase domain of Thermus thermophilus gyrase B in complex with novobiocin

    No full text
    International audienceThe 43 kDa ATPase domain of Thermus thermophilus gyrase B was overproduced in Escherichia coli and a three-step purification protocol yielded large quantities of highly purified enzyme which remained stable for weeks. Crystals of the 43 kDa domain in complex with novobiocin, one of the most potent inhibitors of bacterial topoisomerases, were obtained. Crystals obtained in the presence of PEG 8000 do not diffract, but a different crystal form was obtained using sodium formate as a precipitating agent. The plate-shaped crystals, which were less than 10 microm in thickness, could be cryocooled directly from the mother liquor and a full diffraction data set was collected to 2.3 A allowing the determination of the first structure of a gyrase B 43K domain in complex with a coumarin

    An open conformation of the Thermus thermophilus gyrase B ATP-binding domain

    No full text
    International audienceDNA gyrase forms an A(2)B(2) tetramer involved in DNA replication, repair, recombination, and transcription in which the B subunit catalyzes ATP hydrolysis. The Thermus thermophilus and Escherichia coli gyrases are homologues and present the same catalytic activity. When compared with that of the E. coli 43K-5'-adenylyl-beta,gamma-imidodiphosphate complex, the crystal structure of Gyrase B 43K ATPase domain in complex with novobiocin, one of the most potent inhibitors of gyrase shows large conformational changes of the subdomains within the dimer. The stabilization of loop 98-118 closing the active site through dimeric contacts and interaction with domain 2 allows to observe novobiocin-protein interactions that could not be seen in the 24K-inhibitor complexes. Furthermore, this loop adopts a position which defines an "open" conformation of the active site in absence of ATP, in contrast with the "closed" conformation adopted upon ATP binding. All together, these results indicate how the subdomains may propagate conformational changes from the active site and provide crucial information for the design of more specific inhibitors
    corecore