15 research outputs found

    Patient-tailored adoptive immunotherapy with EBV-specific T cells from related and unrelated donors

    Get PDF
    BACKGROUND: Adoptive transfer of EBV-specific T cells can restore specific immunity in immunocompromised patients with EBV-associated complications. METHODS: We provide results of a personalized T-cell manufacturing program evaluating donor, patient, T-cell product and outcome data. Patient-tailored clinical-grade EBV-specific cytotoxic T-lymphocyte (EBV-CTL) products from stem cell donors (SCD), related third party donors (TPD) or unrelated TPD from the allogeneic T-cell donor registry (alloCELL) established at Hannover Medical School were manufactured by immunomagnetic selection using CliniMACS Plus or Prodigy device and EBV PepTivators EBNA-1 and Select. Consecutive manufacturing processes were evaluated and patient outcome and side effects were retrieved by retrospective chart analysis. RESULTS: Forty clinical-grade EBV-CTL products from SCDs, related or unrelated TPDs were generated for 37 patients with and without transplantation (Tx) history within 5 days (median) after donor identification. 34 patients received 1-14 EBV-CTL products (fresh and cryopreserved). EBV-CTL transfer led to complete response in 20 of 29 patients who were evaluated for clinical response. No infusion-related toxicity was reported. EBV-specific T cells in patients' blood were detectable in 16/18 monitored patients (89 %) after transfer and correlated with clinical response. CONCLUSION: In conclusion, personalized clinical-grade manufacturing of EBV-CTL products via immunomagnetic selection from SCD, related or unrelated TPD is feasible in a timely manner. Overall, EBV-CTL were clinically effective and well-tolerated. Our data suggest EBV-CTL as promising therapeutic approach for immunocompromised patients with refractory EBV-associated diseases beyond HSCT as well as patients with pre-existing organ dysfunction

    Re-examining HSPC1 inhibitors

    Get PDF
    © 2017, The Author(s). HSPC1 is a critical protein in cancer development and progression, including colorectal cancer (CRC). However, clinical trial data reporting the effectiveness of HSPC1 inhibitors on several cancer types has not been as successful as predicted. Furthermore, some N-terminal inhibitors appear to be much more successful than others despite similar underlying mechanisms. This study involved the application of three N-terminal HSPC1 inhibitors, 17-DMAG, NVP-AUY922 and NVP-HSP990 on CRC cells. The effects on client protein levels over time were examined. HSPC1 inhibitors were also applied in combination with chemotherapeutic agents commonly used in CRC treatment (5-fluorouracil, oxaliplatin and irinotecan). As HSPA1A and HSPB1 have anti-apoptotic activity, gene-silencing techniques were employed to investigate the significance of these proteins in HSPC1 inhibitor and chemotherapeutic agent resistance. When comparing the action of the three HSPC1 inhibitors, there are distinct differences in the time course of important client protein degradation events. The differences between HSPC1 inhibitors were also reflected in combination treatment—17-DMAG was more effective compared with NVP-AUY922 in potentiating the cytotoxic effects of 5-fluorouracil, oxaliplatin and irinotecan. This study concludes that there are distinct differences between N-terminal HSPC1 inhibitors, despite their common mode of action. Although treatment with each of the inhibitors results in significant induction of the anti-apoptotic proteins HSPA1A and HSPB1, sensitivity to HSPC1 inhibitors is not improved by gene silencing of HSPA1A or HSPB1. HSPC1 inhibitors potentiate the cytotoxic effects of chemotherapeutic agents in CRC, and this approach is readily available to enter clinical trials. From a translational point of view, there may be great variability in sensitivity to the inhibitors between individual patients

    A first-in-human phase I, dose-escalation, multicentre study of HSP990 administered orally in adult patients with advanced solid malignancies

    Get PDF
    Heat-shock protein 990 (HSP990) is a potent and selective synthetic small-molecule HSP90 inhibitor. The primary objectives of this phase I first-in-human study were to determine dose-limiting toxicities (DLTs), maximum-tolerated dose (MTD) and recommended phase II dose (RP2D). Secondary objectives included characterisation of the safety profile, pharmacokinetics (PKs) and pharmacodynamics (PDs). Heat-shock protein 990 was administered orally once or two times weekly on a 28-day cycle schedule in patients with advanced solid tumours. Dose escalation was guided by a Bayesian logistic regression model with overdose control. A total of 64 patients were enrolled. Fifty-three patients received HSP990 once weekly at 2.5, 5, 10, 20, 30, 50 or 60 mg, whereas 11 patients received HSP990 two times weekly at 25 mg. Median duration of exposure was 8 weeks (range 1-116 weeks) and 12 patients remained on treatment for >16 weeks. Dose-limiting toxicities occurred in seven patients and included diarrhoea, QTc prolongation, ALT/AST elevations and central neurological toxicities. The most common drug-related adverse events were diarrhoea, fatigue and decreased appetite. Further dose escalation beyond 60 mg once weekly was not possible owing to neurological toxicity. Rapid absorption, no drug accumulation and large interpatient variability in PK exposures were observed. No objective responses were seen; 25 patients had a best overall response of stable disease. Heat-shock protein 990 is relatively well tolerated, with neurological toxicity being the most relevant DLT. The single agent MTD/RP2D of HSP990 was declared at 50 mg once weekly

    Synergistic action of the novel HSP90 inhibitor NVP-AUY922 with histone deacetylase inhibitors, melphalan, or doxorubicin in multiple myeloma

    No full text
    Abstract Heat shock protein 90 (HSP90) is a promising target for tumor therapy. The novel HSP90 inhibitor NVP-AUY922 has preclinical activity in multiple myeloma, however, little is known about effective combination partners to design clinical studies. Multiple myeloma cell lines, OPM-2, RPMI-8226, U-266, LP-1, MM1.S and primary myeloma cells were exposed to NVP-AUY922 and one of the combination partners histone deacetylase inhibitor NVP-LBH589, SAHA, melphalan or doxorubicin, either simultaneously or in sequential patterns. Effects on cell proliferation and apoptosis were determined. Synergistic effects were evaluated using the method of Chou and Talalay. Combined sequential incubation with NVP-AUY922 and SAHA showed that best synergistic effects were achieved with 24 hours pre-incubation with SAHA followed by another 48 hours of combination treatment. Combination of NVP-AUY922 with SAHA, NVP-LBH589, melphalan or doxorubicin resulted in synergistic inhibition of viability, with strong synergy (combination index < 0.3) in the case of melphalan. Importantly, resistance of the RPMI-8226 cell line and relative resistance of some primary myeloma cells against NVP-AUY922 could be overcome by combination treatment. These data show impressive synergistic action of the novel HSP90 inhibitor NVP-AUY922 with melphalan, doxorubicin, NVP-LBH589 and SAHA in multiple myeloma and build the frame work for clinical trials

    MicroRNAs in epilepsy : pathophysiology and clinical utility

    Get PDF
    Background Temporal lobe epilepsy is a common and frequently intractable seizure disorder. Its pathogenesis is thought to involve large-scale alterations to the expression of genes controlling neurotransmitter signalling, ion channels, synaptic structure, neuronal death, gliosis, and inflammation. Identification of mechanisms coordinating gene networks in patients with temporal lobe epilepsy will help to identify novel therapeutic targets and biomarkers. MicroRNAs (miRNAs) are a family of small non-coding RNAs that control the expression levels of multiple proteins by decreasing mRNA stability and translation, and could therefore be key regulatory mechanisms and therapeutic targets in epilepsy. Recent developments In the past 5 years, studies have found changes in miRNA levels in the hippocampus of patients with temporal lobe epilepsy and in neural tissues from animal models of epilepsy. Early functional studies showed that silencing of brain-specific miR-134 using antisense oligonucleotides (antagomirs) had potent antiseizure effects in animal models, whereas genetic deletion of miR-128 produced fatal epilepsy in mice. Levels of certain miRNAs were also found to be altered in the blood of rodents after seizures. In the past 18 months, functional studies have identified nine novel miRNAs that appear to influence seizures or hippocampal pathology. Their targets include transcription factors, neurotransmitter signalling components, and modulators of neuroinflammation. New approaches to manipulate miRNAs have been tested, including injection of mimics (agomirs) to enhance brain levels of miRNAs. Altered miRNA expression has also been reported in other types of refractory epilepsy and our understanding of how miRNA levels are controlled has grown, with studies on DNA methylation indicating epigenetic regulation. Biofluids (blood) of patients with epilepsy have shown differences in quantity of circulating miRNAs, implying diagnostic biomarker potential. Where next? Recent functional studies need to be replicated to build a robust evidence base. The specific cell types in which miRNAs execute their functions and their primary targets have to be identified, to fully explain the phenotypic effects of modulating miRNAs. Delivery of large molecules such as antisense inhibitors or mimics to the brain poses a challenge, and the multi-targeting effects of miRNAs create additional risks of unanticipated side effects. Potential genetic variation in miRNAs should be explored as the basis for disease susceptibility. The latest findings provide a rich source of new miRNA targets, but substantial challenges remain before their role in the pathogenesis, diagnosis, and treatment of epilepsy can be translated into clinical practice

    AUY922 Effectively Overcomes MET- and AXL-Mediated Resistance to EGFR-TKI in Lung Cancer Cells

    No full text
    The activation of bypass signals, such as MET and AXL, has been identified as a possible mechanism of EGFR-TKI resistance. Because various oncoproteins depend on HSP90 for maturation and stability, we investigated the effects of AUY922, a newly developed non-geldanamycin class HSP90 inhibitor, in lung cancer cells with MET- and AXL-mediated resistance. We established resistant cell lines with HCC827 cells harboring an exon 19-deletion mutation in of the EGFR gene via long-term exposure to increasing concentrations of gefitinib and erlotinib (HCC827/GR and HCC827/ER, respectively). HCC827/GR resistance was mediated by MET activation, whereas AXL activation caused resistance in HCC827/ER cells. AUY922 treatment effectively suppressed proliferation and induced cell death in both resistant cell lines. Accordingly, the downregulation of EGFR, MET, and AXL led to decreased Akt activation. The inhibitory effects of AUY922 on each receptor were confirmed in gene-transfected LK2 cells. AUY922 also effectively controlled tumor growth in xenograft mouse models containing HCC827/GR and HCC827/ER cells. In addition, AUY922 reduced invasion and migration by both types of resistant cells. Our study findings thus show that AUY922 is a promising therapeutic option for MET- and AXL-mediated resistance to EGFR-TKI in lung cancer

    Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology.

    No full text
    Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected
    corecore