145 research outputs found

    When does less yield more? The impact of severity upon implicit recognition in pure alexia

    Get PDF
    Pure alexia (PA) is characterised by strong effects of word length on reading times and is sometimes accompanied by an overt letter-by-letter (LBL) reading strategy. Past studies have reported “implicit recognition” in some individual PA patients. This is a striking finding because such patients are able to perform semantic classification and lexical decision at above chance levels even when the exposure duration is short enough to prevent explicit identification. In an attempt to determine the prevalence of this “implicit recognition” effect, we assessed semantic categorisation and lexical decision performance using limited exposure durations in 10 PA cases. The majority of the patients showed above chance accuracy in semantic categorisation and lexical decision. Performance on the lexical decision test was influenced by frequency and imageability. In addition, we found that the extent to which patients showed evidence of “implicit recognition” in both tasks was inversely related to the severity of their reading disorder. This result is consistent with hypotheses which suggest that this effect does not constitute an implicit form of unique word identification but is a reflection of the degree of partial activation within the word recognition system. These results also go some way toward explaining the individual variation in the presence of this effect observed across previous case-study investigations in the literature

    A structural connectivity convergence zone in the ventral and anterior temporal lobes: Data-driven evidence from structural imaging

    Get PDF
    The hub-and-spoke model of semantic cognition seeks to reconcile embodied views of a fully distributed semantic network with patient evidence, primarily from semantic dementia, who demonstrate modality-independent conceptual deficits associated with atrophy centred on the ventrolateral anterior temporal lobe. The proponents of this model have recently suggested that the temporal cortex is a graded representational space where concepts become less linked to a specific modality as they are processed farther away from primary and secondary sensory cortices and towards the ventral anterior temporal lobe. To explore whether there is evidence that the connectivity patterns of the temporal lobe converge in its ventral anterior end the current study uses three dimensional Laplacian eigenmapping, a technique that allows visualisation of similarity in a low dimensional space. In this space similarity is encoded in terms of distances between data points. We found that the ventral and anterior temporal lobe is in a unique position of being at the centre of mass of the data points within the connective similarity space. This can be interpreted as the area where the connectivity profiles of all other temporal cortex voxels converge. This study is the first to explicitly investigate the pattern of connectivity and thus provides the missing link in the evidence that the ventral anterior temporal lobe can be considered a multi-modal graded hub

    Category-selective deficits are the exception and not the rule: Evidence from a case-series of 64 patients with ventral occipito-temporal cortex damage

    Get PDF
    The organisational principles of the visual ventral stream are still highly debated, particularly the relative association/dissociation between word and face recognition and the degree of lateralisation of the underlying processes. Reports of dissociations between word and face recognition stem from single case-studies of category selective impairments, and neuroimaging investigations of healthy participants. Despite the historical reliance on single case-studies, more recent group studies have highlighted a greater commonality between word and face recognition. Studying individual patients with rare selective deficits misses (a) important variability between patients, (b) systematic associations between task performance, and (c) patients with mild, severe and/or non-selective impairments; meaning that the full spectrum of deficits is unknown. The Back of the Brain project assessed the range and specificity of visual perceptual impairment in 64 patients with posterior cerebral artery stroke recruited based on lesion localization and not behavioural performance. Word, object, and face processing were measured with comparable tests across different levels of processing to investigate associations and dissociations across domains. We present two complementary analyses of the extensive behavioural battery: (1) a data-driven analysis of the whole patient group, and (2) a single-subject case-series analysis testing for deficits and dissociations in each individual patient. In both analyses, the general organisational principle was of associations between words, objects, and faces even following unilateral lesions. The majority of patients either showed deficits across all domains or in no domain, suggesting a spectrum of visuo-perceptual deficits post stroke. Dissociations were observed, but they were the exception and not the rule: Category-selective impairments were found in only a minority of patients, all of whom showed disproportionate deficits for words. Interestingly, such selective word impairments were found following both left and right hemisphere lesions. This large-scale investigation of posterior cerebral artery stroke patients highlights the bilateral representation of visual perceptual function

    Face-selective responses in combined EEG/MEG recordings with fast periodic visual stimulation (FPVS).

    Get PDF
    Fast periodic visual stimulation (FPVS) allows the recording of objective brain responses of human face categorization (i.e., generalizable face-selective responses) with high signal-to-noise ratio. This approach has been successfully employed in a number of scalp electroencephalography (EEG) studies but has not been used with magnetoencephalography (MEG) yet, let alone with combined MEG/EEG recordings and distributed source estimation. Here, we presented various natural images of faces periodically (1.2 Hz) among natural images of objects (base frequency 6 Hz) whilst recording simultaneous EEG and MEG in 15 participants. Both measurement modalities showed face-selective responses at 1.2 Hz and harmonics across participants, with high and comparable signal-to-noise ratio (SNR) in about 3 min of stimulation. The correlation of face categorization responses between EEG and two MEG sensor types was lower than between the two MEG sensor types, indicating that the two sensor modalities provide independent information about the sources of face-selective responses. Face-selective EEG responses were right-lateralized as reported previously, and were numerically but non-significantly right-lateralized in MEG data. Distributed source estimation based on combined EEG/MEG signals confirmed a more bilateral face-selective response in visual brain regions located anteriorly to the common response to all stimuli at 6 Hz and harmonics. Conventional sensor and source space analyses of evoked responses in the time domain further corroborated this result. Our results demonstrate that FPVS in combination with simultaneously recorded EEG and MEG may serve as an efficient localizer paradigm for human face categorization

    What lies beneath: A comparison of reading aloud in pure alexia and semantic dementia

    Get PDF
    Exaggerated effects of word length upon reading aloud performance define Pure Alexia, but have also been observed in Semantic Dementia. Some researchers have proposed a readingspecific account, whereby performance in these two disorders reflects the same cause: impaired orthographic processing. In contrast, according to the primary systems view of acquired reading disorders, Pure Alexia results from a basic visual processing deficit, whereas degraded semantic knowledge undermines reading performance in Semantic Dementia. To explore the source of reading deficits in these two disorders, we compared the reading performance of 10 Pure Alexic and 10 Semantic Dementia patients, matched in terms of overall severity of reading deficit. The results revealed comparable frequency effects on reading accuracy, but weaker effects of regularity in Pure Alexia than Semantic Dementia. Analysis of error types revealed a higher rate of letter-based errors and a lower rate of regularisation responses in Pure Alexia than Semantic Dementia. Error responses were most often words in Pure Alexia but most often nonwords in Semantic Dementia. Although all patients made some letter substitution errors, these were characterised by visual similarity in Pure Alexia and phonological similarity in Semantic Dementia. Overall, the data indicate that the reading deficits in Pure Alexia and Semantic Dementia arise from impairments of visual processing and knowledge of word meaning, respectively. The locus and mechanisms of these impairments are placed within the context of current connectionist models of reading
    • 

    corecore