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a b s t r a c t 

Fast periodic visual stimulation (FPVS) allows the recording of objective brain responses of human face cate- 

gorization (i.e., generalizable face-selective responses) with high signal-to-noise ratio. This approach has been 

successfully employed in a number of scalp electroencephalography (EEG) studies but has not been used with 

magnetoencephalography (MEG) yet, let alone with combined MEG/EEG recordings and distributed source esti- 

mation. Here, we presented various natural images of faces periodically (1.2 Hz) among natural images of objects 

(base frequency 6 Hz) whilst recording simultaneous EEG and MEG in 15 participants. Both measurement modal- 

ities showed face-selective responses at 1.2 Hz and harmonics across participants, with high and comparable 

signal-to-noise ratio (SNR) in about 3 min of stimulation. The correlation of face categorization responses be- 

tween EEG and two MEG sensor types was lower than between the two MEG sensor types, indicating that the two 

sensor modalities provide independent information about the sources of face-selective responses. Face-selective 

EEG responses were right-lateralized as reported previously, and were numerically but non-significantly right- 

lateralized in MEG data. Distributed source estimation based on combined EEG/MEG signals confirmed a more 

bilateral face-selective response in visual brain regions located anteriorly to the common response to all stimuli 

at 6 Hz and harmonics. Conventional sensor and source space analyses of evoked responses in the time domain 

further corroborated this result. Our results demonstrate that FPVS in combination with simultaneously recorded 

EEG and MEG may serve as an efficient localizer paradigm for human face categorization. 
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. Introduction 

The speed and efficiency of our ability to categorize a large num-
er of objects from visual input within a fraction of a second has been
he focus of extensive neuroscientific research over the last decades
 Cichy at al., 2014 ; Fabre-Thorpe, 2011 ; Lamme and Roelfsema, 2000 ;
almeri and Gauthier, 2004 ; Riesenhuber and Poggio, 2002 ; Serre at
l., 2007 ; Thorpe, 2009 ). Faces have received special interest because
f their social relevance in humans, specific brain disorders, and dis-
inctive brain signatures ( Freiwald at al., 2016 ; Grill-Spector et al.,
017 ; Haxby et al., 1996 ; Rossion, 2014a ; Sergent and Signoret, 1992 ).
he neurotypical adult human brain quasi-automatically categorizes
ace stimuli at multiple levels: e.g., according to its emotional expres-
ion, sex, race, familiarity, etc. The most basic categorization level is
hat of the visual stimulus as a face, as opposed to its categorization
s a non-face object. Although the categorization of a visual stimu-
us as a face may appear as a trivial task because it is achieved at
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stonishing speed and automaticity by a neurotypical human adult
 Crouzet et al., 2010 ; Fletcher-Watson, Findlay et al., 2008 ; Hershler and
ochstein, 2005 ; Lewis and Edmonds, 2003 ), it is a challenging function

or which artificial systems still lag well behind the human brain (e.g.
cheirer et al. 2014 ). 

A fast periodic visual stimulation (FPVS) paradigm combined with
lectroencephalographic (EEG) recordings has been suggested as an
fficient way to study multiple levels and types of face categoriza-
ion ( Rossion, 2014b ), in particular the categorization of natural visual
timuli as faces ( Rossion et al., 2015 ). FPVS is based on the princi-
le of “frequency-tagging ”, according to which stimuli presented at a
eriodic rate lead to periodic brain responses ( Adrian and Matthews,
934 ), which can be objectively identified and separated from noise in
he EEG frequency spectrum ( Regan, 1989 ; Norcia et al., 2015 ). The
PVS approach provides particularly high signal-to-noise ratio (SNR)
esponses, allowing short recording durations. In recent years, this
aradigm has been increasingly used with numerous variable natural
mages of faces and nonface objects, providing face-selective responses
st 2021 
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Fig. 1. Illustration of the FPVS face-object paradigm. The same stimuli as in 

Rossion et al. (2015) were used. Natural images of objects were presented at 

6 Hz following a sinusoidal contrast modulation. Unfamiliar face images were 

inserted every 5 stimuli, corresponding to a frequency of 1.2 Hz ( = 6 Hz/5). 

Note that the face pictures displayed in the figure are different from those used 

in our experiment because of copyright reasons. 
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hat are generalizable across face exemplars and not accounted for by
ow-level visual cues contained in the image statistics (amplitude spec-
rum; ( Rossion et al., 2015 )). Moreover, previous studies presenting dif-
erent exemplars of various object categories (e.g., houses and non-face
ody parts) have shown that their periodic category-selective responses
re substantially smaller and different in topography and lateralization
ompared to faces ( Jacques et al., 2016 ) (see also Hagen et al. 2020 for
ntracranial evidence). 

Importantly, while this paradigm has been used extensively with EEG
ut also intracranial recordings ( Jonas et al., 2016 ) and functional mag-
etic resonance imaging (fMRI) ( Gao et al., 2018 ), it has not been used
ith magnetoencephalography (MEG). In addition, previous frequency-

agging MEG studies with face stimuli have not isolated face-selective
esponses (e.g. Baldauf and Desimone 2014) for generic responses to
patially overlapping faces or houses modulated by selective attention;
suruhara et al. (2014) to upright and inverted geometrical faces). 

Surface EEG and MEG do not provide reliable information about the
eural generators of the signals (e.g. Ahlfors et al. 2010 ). Intracranial
ecordings can provide information about the spatial localization and
istribution of neural generators. However, a direct comparison of EEG
nd intracranial recordings is complicated by the latter’s limited cov-
rage of the brain and differences in their sensitivity to brain sources.
hile MEG, just as EEG, also suffers from the non-uniqueness of the

o-called inverse problem ( Sarvas, 1987 ) and therefore has only limited
patial resolution, the highest spatial resolution can be obtained using
 combination of EEG and MEG recordings, as they are sensitive to dif-
erent spatial aspects of the neural current distributions ( Ahlfors et al.,
010 ; Goldenholz et al., 2009 ; Hauk et al., 2019 ; Henson et al., 2009 ;
olins et al., 2008 ). 

Here, for the first time we apply the FPVS paradigm of generic
ace categorization with combined EEG/MEG recordings and source es-
imation. Our main aim is to (1) replicate the original EEG findings
 Rossion et al., 2015 ) in MEG, (2) test whether MEG (gradiometers and
agnetometers) is equally sensitive to face-selective FPVS responses as
EG, (3) and if so, use combined EEG and MEG responses to estimate
heir neural generators using distributed source estimation in individ-
al head and source models. Of particular interest is the comparison be-
ween category-selective EEG and MEG signals in the frequency-domain
n terms of their respective signal-to-noise ratios and relative values
cross individual brains (i.e., are face-selective MEG and EEG responses
orrelated across individual brains and if so to what extent?). Our source
stimation results extend these findings and provide evidence for the
eural generators of the face categorization response, especially with
espect to their laterality. 

. Methods 

.1. Participants 

Eighteen participants in the age range 19–35 years were recruited
rom the MRC CBU’s volunteer panel database (9 identified themselves
s female, mean age = 28.33). Two of them had to be excluded because
e were not able to obtain their structural MRI images, and one was

xcluded because of large MEG artefacts during the recording session
likely due to a dental implant), leaving 15 datasets for the final analy-
is. All participants reported to be right-handed native English speakers,
o have normal or corrected-to-normal vision, and to have no history of
eurological or developmental disorders. They were monetarily reim-
ursed for their participation to the study. This study was approved by
he Cambridge Psychology Research Ethics Committee. 

.2. Stimuli 

Our stimuli and experimental settings are close to those described
n Rossion et al (2015) . The stimulus set was the same as used in
hat study. It consisted of 200 black and white photographic images
2 
f various common objects (animals, plants, objects and houses) col-
ected from the internet, and 50 photographs of unfamiliar faces. Im-
ortantly, all objects and faces were unsegmented, i.e., embedded in
heir original visual scene. The various objects and faces were centred,
ut they differed in terms of size, viewpoint, lighting conditions, and
ackground ( Fig. 1 ; Movie 1). The entire set of stimuli is available on-
ine at https://face-categorization-lab.webnode.com/resources/natural-
ace-stimuli/ . The stimuli were converted to grayscale, resized to
00 × 200 pixels, and equalized in terms of pixel luminance and root-
ean square contrast in Matlab. Importantly, given that this normal-

zation is performed on the whole image, the faces in these natural im-
ges still purposely differed substantially in local luminance, contrast,
nd power spectrum. Shown on a screen at a distance of approximately
.3 m in front of the participant, the stimuli subtended approximately
° of visual angle. 

.3. Procedure 

A schematic illustration of the FPVS paradigm as employed is pre-
ented in Fig. 1 . Stimuli were presented to participants with Java.
ll stimuli were presented on a uniform grey background using sinu-
oidal contrast manipulation, from 0 to 100% to 0% for each stimulus
 Rossion et al, 2015 ). Monitor refresh rate was 60 Hz. 

Participants completed three runs of face-object stimulation. Each
un consisted of pictures of objects presented at a base frequency of
 Hz (166 ms per stimulus), and every fifth image was an unfamiliar face
frequency 1.2 Hz). A neural response that does not differ systematically
etween faces and non-face objects will project on the 6 Hz component
f the EEG spectrum and its harmonics (12 Hz, etc.), whereas a differ-
ntial response for faces (i.e., a face-selective response) will be reflected
t 1.2 Hz and harmonics (2.4 Hz, etc.). Each run lasted for 64 s, includ-
ng 2 s of fade-in and fade-out at the beginning and at the end of the
equence, respectively. 

As in previous studies (e.g. Rossion et al. 2015 ), participants were
nstructed to perform a colour change detection task during the stimulus
resentation period. Participants were asked to press a button with their
ight index finger when they perceived a change in the colour of the
xation cross which is presented in the centre of the screen. The colour
hange happened (randomly) 8 times per run and it lasted for 500 ms.
he minimum difference in time between each colour change was 2 s.
ne participant’s behavioural responses were only collected for one one-
inute run due to a technical error. 

This task was chosen because it is orthogonal to the experimental ma-
ipulation (i.e., face categorization), and has been used widely in previ-
us FPVS studies (e.g., Liu-Shuang et al. 2014 , Rossion et al. 2015 and
ee Rossion et al. 2020 ). Its purpose was to ensure that participants
aid attention to the stimuli. This was confirmed, as performance was
igh with an average correct target detection rate of 95% (standard
eviation 6%, min|max 83%|100%) and an average response time of
23 ms (SD 68 ms, min|max 412 ms|676 ms), which is comparable to

https://face-categorization-lab.webnode.com/resources/natural-face-stimuli/
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revious studies ( Retter et al., 2020 ; Rossion et al., 2015 ). The face-
bject runs were administered after 9 similar runs using word stimuli,
he results of which will be reported elsewhere. We also ran two 2 min
esting-state runs at the beginning and end of the recording session in
rder to compute noise covariance matrices for source estimation (see
elow). 

.4. Data acquisition 

EEG/MEG data were acquired on an Elekta Neuromag Vectorview
ystem (Elekta AB, Stockholm, Sweden), containing 306 MEG sensors
102 magnetometers and 204 gradiometers), and 70 EEG electrodes
ounted on an Easycap cap (EasyCap GmbH, Herrsching, Germany).
he EEG recording reference electrode was attached to the nose, and
he ground electrode to the left cheek. The electrooculogram (EOG) was
ecorded from electrodes above and below the left eye (vertical EOG)
nd at the outer canthi (horizontal EOG). The sampling rate during data
cquisition was 1000 Hz and an on-line band pass filter 0.03 to 330 Hz
as applied. Prior to the EEG/MEG recording, the positions of 5 Head
osition Indicator (HPI) coils were attached to the EEG cap (for head
ocalisation inside the scanner and continuous movement tracking), 3
natomical landmark points (two preauricular points and nasion) as well
s the EEG electrodes and about 50–100 additional points that cover
ost of the scalp were digitised using a 3Space Isotrak II System (Pol-
emus, Colchester, Vermont, USA) for later co-registration with MRI
ata. Our data can be made available via the MRC Cognition and Brain
ciences Unit’s data repository on request. 

High-resolution structural T1-weighted MRI images were acquired
n a 3T Siemens Tim Trio scanner at the MRC Cognition and Brain
ciences Unit (UK) with a 3-D magnetization prepared rapid gradient-
cho sequence, field of view = 256 × 240 × 160 mm, matrix di-
ensions = 256 × 240 × 160, 1 mm isotropic resolution, repetition

ime = 2250 ms, inversion time = 900 ms, echo time = 2.99 ms, and
ip angle = 9°. 

.5. Sensor space analysis 

.5.1. Pre-processing 

MEG data were subjected to spatio-temporal signal-space separation
SSS) implemented in the Maxfilter software (Version 2.2.12) of Elekta
euromag to remove noise generated from sources distant to the sen-

or array ( Taulu and Kajola, 2005 ; Taulu and Simola, 2006 ). The SSS
rocedure included movement compensation (locations recorded every
00 ms), bad MEG channel interpolation, and temporal SSS extension
with default buffer length 10 s and sub-space correlation limit 0.98).
he origin in the head frame is chosen as (0,0,45) mm. 

The following steps of analysis were performed in MNE-Python
ersion 0.20 software package ( http://martinos.org/mne/stable/

ndex.html ) ( Gramfort et al., 2013 ). After visual inspection of the raw
ata, bad EEG channels (determined by visual inspection) were interpo-
ated using spherical harmonics and ‘accurate’ option in MNE-Python.
n average we interpolated 1.8 EEG channels and 2.3 MEG channels

as above) per participant. A notch filter at 50 and 100 Hz was then
pplied, followed by a band-pass filter between 0.1 and 140 Hz. In
rder to remove eye movements and heart artefact an Independent
omponent Analysis (ICA) was computed, removing a maximum of
 ICA components (2 for heart, 2 for eyes). The exact ICA procedure
losely followed the examples provided for the MNE-Python software
 https://martinos.org/mne/dev/auto_tutorials/plot_ica_from_raw.html ),
hich uses the temporal correlation between ICA components and EOG

hannels as a criterion for the removal of ICA components. 

.5.2. Frequency- and time-domain analyses 

First, data of the three 60 s runs (with fade-in and –out periods re-
oved) were averaged in the time domain to improve SNR, and a Fast

ourier Transform (FFT) with frequency resolution 0 . 08 ̄3 was applied.
3 
e divided the FFT spectrum into segments of + /- 0.75 Hz centred at
he frequency of interest and its higher harmonics (e.g., 0.45–1.95 Hz
or the 1.2 Hz peak; 1.65–3.15 Hz for the 2.4 Hz peak, etc.). Ten seg-
ents centred on the frequency of interest and the higher harmonics
ere then summed up (i.e., until 14.4 Hz) ( Retter et al., 2021 ). For

he face-selective frequency, i.e. 1.2 Hz, any multiples of the base fre-
uency (i.e., 6 and 12 Hz) were excluded. In order to correct for the
ariations in baseline noise levels around each frequency of interest, the
mplitude of neighbouring frequency-bins within a range of 0.75 Hz on
ach side was averaged and then subtracted from each frequency bin
 Retter et al., 2020 ). A gap of one frequency bin on each side of the tar-
et frequency was included in case of remaining spectral leakage. The
inimum and maximum values were also removed from the baseline in-

erval. We applied the same summing and baseline correction procedure
o the harmonics of the base frequency (6–120 Hz). Finally, Z-scores for
ace-selective and base stimulation frequencies were computed by di-
iding the baseline-corrected amplitudes by the standard deviation of
he neighbouring bins. 

Sensor space results are presented separately for the three sensor
ypes employed in this study: EEG, gradiometers and magnetometers.
he physics of EEG and MEG signal generation indicates that these sen-
or types do not have to produce the same pattern of results (e.g. with
espect to laterality), and that their combination provides the most com-
lete information for source estimation ( Ahlfors et al., 2010 ; Hauk et al.,
019 ; Henson et al., 2009 ; Molins et al., 2008 ). The EEG measures the
lectric potential at the locations of individual electrodes in Volts. The
EG data in our study were measured by two sensor types of the ME-
IN Vectorview system: magnetometers and planar gradiometers. Mag-
etometers measure the magnetic flux through a single coil in Tesla,
hile gradiometers measure the magnetic flux gradient (i.e. the differ-

nce between two adjacent coils) in two orthogonal directions in Tesla-
er-Meter. A magnetometer and two orthogonal planar gradiometers at
he same location are sensitive to different source configuration (they
ave orthogonal “leadfields ”). Thus, placing a combination of one mag-
etometer and two orthogonal planar gradiometers at each location of
he sensor array results in optimal sampling of the magnetic field distri-
ution with a given amount of sensors. These sensor types differ with
espect to their sensitivity to electrical brain activity. While the sen-
itivity of all sensor types drops of with the distance between source
nd sensors, this drop-off is steeper for MEG than EEG and steeper for
radiometers than magnetometers (in a perfect homogeneous sphere a
ipole at the sphere’s centre does not produce any external magnetic
eld). MEG is relatively insensitive to radial dipolar sources (i.e. per-
endicular to the scalp; in a perfect homogenous sphere these sources
ould not produce an external magnetic field), while EEG is more sen-

itive to radial compared to tangential dipolar sources. In simulations
EG has been shown to be more sensitive to spatially extended sources
han MEG ( Ahlfors et al., 2010 ). Thus, in this study we tested whether
e can detect face-selective FPVS responses in each sensor type. Because

his was the case (see below), we combined all sensor types for source
stimation. 

As there are two gradient measurements per sensor location, the val-
es of each gradiometer pair will be plotted as the root-mean-square
RMS) per pair. Note that we will present all results as Z-scores, which
re comparable across sensor types. 

We will display results in the frequency domain for sensors with
aximum Z-scores at the face-selective and base frequency, respec-

ively. Because these responses are several times larger than our signifi-
ance threshold ( t = 1.96), and for EEG they replicate previous findings,
e do not consider the selection of peak sensors as “double dipping ”
 Kriegeskorte et al., 2009 ; Tiedt et al., 2016 ), but rather as the selection
f sensors with the largest signals. In addition, we include the topogra-
hies of z-scores for face-selective and base frequencies as inlets, which
re clearly non-random and consistent with activity arising from sources
n posterior brain areas. For EEG, we ran a separate analysis with elec-
rode groups close to those in Retter et al. (2020) , which yielded qual-

http://martinos.org/mne/stable/index.html
https://martinos.org/mne/dev/auto_tutorials/plot_ica_from_raw.html
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tatively similar results. Responses will be considered to be significant
hen z-scores exceed 1.96 ( p < 0.05, 2-tailed). 

In order to test for laterality differences in posterior EEG chan-
els, we selected four electrodes that were close to those used in
etter et al. (2020) (i.e. P7/8, P9/10, PO7/8, P09/10 in the left/right
emisphere). No previous data exist from MEG experiments to reliably
efine sensor groups of interest. We therefore used generic groupings of
2 magnetometers and 24 gradiometers above left and right occipital
rain areas 1 . We ran paired one-sided t-tests to assess statistical signifi-
ance of differences between left and right sensor groups. 

EEG and MEG data will then be combined for source estimation.
imilarly, based on clear results in sensor space, we will interpret peak
-scores in posterior brain regions for our source estimates. 

Evoked responses in the time domain were computed for face stimuli
or a latency window from -200 ms before to 500 ms after stimulus onset,
ith a Notch filter at the base frequency and its harmonics (transition
andwidth 0.02 Hz). 

.6. Source space analysis 

Source estimation was performed on combined EEG/MEG data us-
ng L2-minimum-norm estimation, as appropriate for data where the
umber and location of sources is not known a-priori ( Hämäläinen and
lmoniemi, 1984 ; Hauk, 2004 ). In the frequency domain, source esti-
ates were computed for the summed topographies across harmon-

cs for the face-selective and base frequencies, respectively. This was
erformed in MNE-Python software with standard parameters settings.
e used individual MRI images for head-modelling. The MRI data
ere pre-processed in Freesurfer V6.0.0 ( Fischl, 2012 ), and the head
odel (3-layer boundary element model) created in MNE-Python. We
sed L2-minimum-norm estimation without depth-weighting or noise-
ormalisation, and with a loose orientation constraint (ratio of variances
etween tangential and normal dipole components: 0.2). The data from
ifferent sensor types were combined for source estimating using a stan-
ard “whitening ” approach implemented in the MNE-Python software.
e used a regularisation parameter based on a SNR value of 3 (default

n the software). The procedures for baseline-correction and z-scoring in
he frequency domains as described above were also applied to source-
pace results. The same parameter settings were applied for source esti-
ation of the evoked face-selective signals in the time domain. 

The laterality of face-selective FPVS responses in source space was
nvestigated for several regions-of-interest in posterior inferior temporal
ortex from the HCP-MMP1.0 parcellation (Human Connectome Project
ulti-Modal Parcellation version 1.0) ( Glasser et al., 2016 ). While the

fusiform face complex ” of this parcellation is of particular interest for
ur study, we also included surrounding regions due to the limited spa-
ial resolution of EEG/MEG (see Fig. 6 ). For the same reason we do not
onsider a more fine-grained analysis of these parcels, some of which
re in deeper areas of the inferior temporal lobe, meaningful for our
urposes ( Hauk et al., 2019 ; Krishnaswamy et al., 2017 ; Molins et al.,
008 ). We assessed statistical significance of brain activation between
he two hemispheres using paired one-tailed t-tests. 

. Results 

In the following, we will first present results in the frequency domain
ollowed by evoked face-selective responses, and in each case we will
rst show sensor space results followed by source estimates. 

Fig. 2 shows the z-scored frequency spectra grand-averaged across
ll participants. We selected four peak sensors with maximum Z-scores
coloured lines) for each sensor types, i.e. EEG (top), gradiometers (mid-
le) and magnetometers (bottom). The peaks at multiples of 6 Hz reflect
1 ‘Left-occipital’ and ‘Right-occipital’ in MNE-Python’s function 

ne.read_selection(). C

4 
he base frequency, or the common response to object and face presen-
ation, and the multiples of 1.2 Hz the selective frequency of face pre-
entation. While the peaks for the base frequency reflect brain responses
riven by the periodic presentation of visual stimuli across object cat-
gories, the responses for the face frequency reflect discrimination be-
ween faces and objects, i.e. a categorization response ( Rossion et al.,
015 ). All sensor types show face categorization responses in posterior
ensors. 

We analysed the lateralization of these responses separately for the
hree sensor types. For EEG, the t-test on posterior electrode groups re-
ealed a right-lateralisation for face categorization responses (Left 3.24
s Right 6.13, t (14) = -2.85, p (14) = 0.006) as well as for base frequency
esponses (11.97 vs 20.48, t (14) = -2.43, p (14) = 0.014). Gradiometers
nly showed a numerical but non-significant right-lateralization for face
ategorization (4.28 vs 5.14, p = 0.16), but this was significant for the
ase frequency (21.53 vs 26.77, p < 0.0002). A similar non-significant
ateralization pattern was found for magnetometers for face catego-
ization (3.79 vs 4.18, p = 0.26), which was marginally significant for
he base frequency (18.71 vs 22.69, p = 0.06). Thus, while we repli-
ated previous right-lateralization of face categorization responses for
EG, these responses appeared numerically but non-significantly right-
ateralized in MEG. Note that for the unspecific base frequency response
 right-lateralization was also reported in previous studies for EEG (e.g.
ossion et al. (2015) ). 

Fig. 3 presents the Z-scored summed frequency spectra epoched
round harmonics of base (top) and face-selective oddball (bottom) fre-
uencies. As before, results are shown for peak sensors of each sensor
ype separately. The peak centred at 0 Hz for oddball responses confirms
he presence of discrimination responses between faces and objects in
ll sensor types. 

Fig. 4 presents Z-scores for individual participants. Fig. 4 A shows
-score values (root-mean-squares of peak channels) for base and face-
elective responses for all individual participants. Fig. 4 B presents the
orresponding topographies, scaled to their individual maxima. For
EG, all 15 participants show significant face categorization responses,
nd for MEG sensors there is only one participant who does not. How-
ver, the MEG topographies for this participant (S2) in Fig. 4 B do show
ilateral maxima in posterior areas, consistent with signals originating
n visual brain areas. It is possible that for this particular participant the
rientation of the current sources was approximately radial with respect
o the skull, thus allowing detection in EEG but staying below signifi-
ance level in MEG. In sum, this demonstrates that all sensor types show
ace categorization responses for most participants. 

Fig. 4 C shows the correlations of Z-scores of Fig. 4 A among sensor
ypes across participants. Confidence intervals were estimated based on
tandard deviations of Fisher’s Z-transformed correlations 2 . For MEG
ensors these correlations were 0.9 (face-selective; low 0.72, high 0.97)
nd 0.89 (base; 0.7, 0.96). For EEG and gradiometers the correlations
ere 0.7 (0.3, 0.89) and 0.63 (0.17, 0.86), and for EEG and magnetome-

ers 0.56 (0.07, 0.83) and 0.53 (0.03, 0.82). While confidence intervals
artially overlap, this provides evidence that EEG and MEG carry in-
ependent information. That is, a large face-selective response in EEG
s not necessarily associated with a large face-selective response in the
oncurrent MEG recording. This is a major justification for their combi-
ation in source estimation. 

In order to test whether independence between EEG and MEG also
olds with respect to laterality, we also correlated the laterality values
i.e. left-right differences for the sensor groups used in the laterality
nalysis above). These correlations between EEG and MEG were indeed
lose to 0 (EEG vs Gradiometers: 0.03, 95% confidence interval (-0.49,
.53); EEG vs Magnetometer: 0.06 (-0.47, 0.56)), and clearly lower than
etween the MEG sensor types (Gradiometers vs Magnetometers: 0.74
2 Corresponding Python code: https://zhiyzuo.github.io/Pearson-Correlation- 

I-in-Python/ . 

https://zhiyzuo.github.io/Pearson-Correlation-CI-in-Python/
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Fig. 2. Power spectral densities of FPVS data for EEG, 

gradiometers and magnetometers. The peaks at mul- 

tiples of 6 Hz correspond to the base frequency of 

visual stimulus presentation, and the peaks at multi- 

ples of 1.2 Hz correspond to face-selective responses. 

We present signals from four peak sensors determined 

at the face-selective frequency in the grand-average. 

Their positions are indicated in the inlet. 
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0.37, 0.91)). This confirms that EEG and MEG carry independent infor-
ation about the lateralization of face-selective FPVS responses. 

Fig. 5 displays the peak Z-scores and topographies for individual
ace-selective and base frequency harmonics in more detail. For the base
requency, z-scores decrease rapidly across harmonics: The second har-
onic’s Z-score is already less than half that of the fundamental or first
armonic. For the face-selective frequency, z-scores increase for the sec-
nd harmonic (2.4 Hz) compared to the fundamental frequency. This
s likely due to high noise level around the fundamental frequency of
.2 Hz. 

The summed and Z-scored L2-minimum-norm source estimates ob-
ained from combined EEG and MEG data for activity at the base and
ace-selective frequencies are displayed in Fig. 6 . Peak activity is con-
ned to posterior brain regions in both cerebral hemispheres, but is more
idespread in the right compared to the left hemisphere. The most ante-

ior peaks for z-scores at the base frequency occurred in visual brain area
5 
4 (based on HCP-MMP1.0 parcellation ( Glasser et al., 2016 )), while
or face categorization responses peaks were located more anteriorly,
verlapping with the Fusiform Face Complex (FFC) and Ventral Me-
ial Visual area 3 (VMV3). Because of localization biases inherent in
EG/MEG data, we also tested for laterality effects in the neighboring
reas depicted in Fig. 6 using paired one-tailed t-tests. For the base fre-
uency we found significant right-lateralization in V4 (Left 45.8 vs Right
1.3, t = -2.29, p < 0.05) and FFC (33.8 vs 26.5, t = -1.86, p < 0.05), but not
n other areas (all p > 0.2). Laterality did not approach significance for
ace-selective responses in either FFC (4.5 vs 5.3, t = -0.86, p = 0.2), VMV3
3.3 vs 3.6, t = -0.48, p = 0.32) or surrounding areas (all p > 0.2). Thus,
hile our source estimates revealed significant right-lateralization for

he base frequency as in the sensor space data for all sensor types, face
ategorization responses were more bilateral as in the MEG sensor data.

We also analysed our data using a conventional time-domain ap-
roach. The evoked responses based on time-domain averaged for face
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Fig. 3. Sum of Z-scored frequency spectra epoched around harmonics of base (left) and face-selective (right) frequencies. 

Data are shown for four peak sensors (coloured lines) within EEG (top), gradiometers (middle) and magnetometers (bottom). Peak sensors were determined from 

the grand-mean across all participants, and their locations are shown in the top-left inlets. The top-right inlets present sensor space topographies for face-selective 

and base frequency responses summed across harmonics. 

The peak at 0 Hz for face-selective responses indicates reliable discrimination between faces and objects. All sensor types show reliable face discrimination responses. 
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timuli are shown in Fig. 7 . These responses reflect face-selective brain
ctivity in the time domain. Scalp topographies are included at four peak
atencies (chosen based on previous EEG reports, Rossion et al. (2015) as
ell as by visual inspection of the time courses in order to use one la-

ency per peak across sensor types). For the gradiometer topographies
e computed the root-mean-square (RMS) value for the two gradiome-

ers at every sensor location. Considering the delay in stimulus onset
ue to the sinewave contrast modulation used (see Retter et al. 2018 ), all
hree sensor types exhibit evoked responses with peaks around 120, 190,
40 ms and a broader peak around 400 ms (see also Rossion et al. 2015 ).
he topographies associated with these peaks are consistent with brain
ctivity in posterior brain areas. 

This is confirmed in the L2-minimum-norm estimates in Fig. 8 . Brain
ctivity in posterior brain is stronger and more widespread in the right
emisphere. Interestingly, while face-selective brain activity at 190 ms
s more anterior to activity at 130 ms, it appears to move back to the
ccipital pole at 240 ms. 

. Discussion 

We used the fast periodic visual stimulation (FPVS) paradigm with
ombined EEG and MEG to study the neural sources and dynamics of
utomatic face categorization processes in the human brain. We repli-
6 
ated previous results obtained with EEG ( Or et al., 2019 ; Retter et al.,
020 ; Rossion et al., 2015 ), and show that MEG produces similar signal-
o-noise ratios for face-selective FPVS responses as EEG. For the first
ime we presented distributed source estimates based on combined
EG and MEG recordings in a FPVS paradigm. The sources for gen-
ral visual and face-selective brain responses were plausibly localized
nto posterior visual brain areas. The dominant sources were more
nterior and at least numerically right-lateralized for face-selective
rain responses, in line with extensive neuroimaging evidence (e.g.
rill-Spector et al. 2017 , Jonas et al. 2016 , Kanwisher et al. 1997 ,
ossion et al. 2012 and Sergent and Signoret 1992 ) and most impor-

antly with intracerebral recordings obtained with the exact same stim-
lation paradigm ( Hagen et al., 2020 ; Jonas et al., 2016 ). The sources
or evoked responses in the time domain showed recurrent activation
atterns within the first 250 ms after stimulus onset. All of our indi-
idual participants except one in MEG showed significant face-selective
esponses. We obtained our results based on data acquired in a very
hort amount of time (about three minutes). Thus, the FPVS paradigm
an be used as an efficient localizer for face categorization brain activity
n both EEG and MEG. 

Since their sensors are sensitive to different source distributions (i.e.,
heir leadfields are linearly independent), EEG and MEG signals pro-
ide complementary information. Importantly, the FPVS method pro-
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Fig. 4. Z-scores for individual participants. 

(A) Root-mean-squared Z-scores for peak channels of different sensor types for base and face-selective responses. The horizontal lines represent a z-score of 1.96. 

(B) Individual topographies of face-selective responses summed across harmonics and scaled to their individual maxima. (C) Correlations of peak z-scores for sensor 

types across participants. All sensor types show reliable face discrimination responses for most participants. 

7 
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Fig. 5. Z-score amplitudes and topographies across harmonics for different sensor types. 

Data are shown for base (top) and face-selective (bottom) frequency. The left panels present amplitudes for four peak sensors (coloured lines) within EEG (top), 

gradiometers (middle) and magnetometers (bottom). On the right we show the corresponding topographies (colour scheme indicated in the middle, with maximum 

Z-scores to the right of the topographies). 

Amplitudes decrease across the first 10 harmonics for all sensor types. 
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ides an objective definition (i.e., at the experimentally-defined fre-
uency) and quantification (i.e., sum of significant harmonics) of the
esponse in the frequency domain, allowing a fair comparison of these
ignals across modalities. Interestingly, Z-scores were high and compara-
le across modalities ( Figs. 2 and 3 ). While the patterns of harmonics dif-
ered slightly between MEG and EEG, these patterns reflect the shape of
he response in the time domain ( Retter and Rossion, 2016 ; Retter et al.,
8 
021 ), which is indeed different across MEG and EEG signals ( Fig. 7 ), al-
eit being dominated by a large negative component peaking at around
50 ms (with a delay in stimulus onset due to the sinusoidal contrast
timulation mode). In our study the correlation of amplitudes for face-
elective brain responses between EEG and MEG sensors across partici-
ants was high but not perfect, and significantly lower than unimodal-
ty (MEG-MEG) correlations. This indicates that EEG and MEG signals
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Fig. 6. Z-scored L2-MNE source estimates for summed amplitudes across harmonics for base (top) and face-selective (bottom) frequency. 

Distributions are shown on inflated cortical surfaces in lateral view (first two columns, right and left hemisphere, respectively) and ventral views (3rd column). The 

regions-of-interest (green outlines) were chosen from the HCP-MMP0.1 parcellation (VMV3: Ventro-medial visual area 3, TE2p: Temporal area 2 posterior). 

The peaks in both hemispheres are more anterior for face-selective compared to base frequency responses. 

RH: right hemisphere; LH: left hemisphere. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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eflect partially different source configurations, e.g., varying in source
ocations and spatial extent, or in other words the same sources project
ifferently to the scalp to be recorded in MEG vs. EEG ( Ahlfors et al.,
010 ; Ahlfors et al., 2010 ). Either way, this means that combined EEG
nd MEG provide a more complete picture of face categorization re-
ponses recorded outside the brain and higher spatial resolution than
ach of these measurement modalities on their own ( Hauk et al., 2019 ;
olins et al., 2008 ). 

We observed right hemispheric (RH) lateralization of the face-
elective response for EEG, in line with results from previous studies
 Or et al., 2019 ; Retter et al., 2020 ; Rossion et al., 2015 ) and with the
ight hemispheric lateralization of the face-selective N170 evoked by
he sudden onset of a face (see Bentin et al. 1996 , Rossion and Jacques
011 for review). This right-lateralization was only numerically present
n both MEG sensor types, which showed more bilateral face categoriza-
ion responses. Importantly, the correlation of laterality values between
EG and MEG was low, providing further evidence that EEG and MEG
arry different information about face-selective FPVS responses. Thus,
e combined EEG and MEG for source estimation in order to analyse lat-

rality effects in source space. The right lateralization in our EEG data
nd the bilateral MEG responses may reflect the fact that the overall
eural sources are more radial in the right compared to the left hemi-
phere, but their tangential component is more bilateral or even left-
ateralized. This could be due to the fact that a substantial amount of
ace-selective activity, in particular in this paradigm, may occur in the
9 
edial bank of the OTS, as shown with human intracerebral record-
ngs ( Hagen et al., 2020 ; Jonas et al., 2016 ), contributing to radial
ipoles pointing to occipito-temporal EEG electrodes on the scalp (see
ig. 8 in Bentin et al. 1996 ). Moreover, right lateralized face-selective
ctivity in the Mid-Fusiform Sulcus ( Weiner, 2019 ), in the inferior oc-
ipital gyrus (see the simultaneous intracerebral-scalp recording study
f Jacques et al. (2019) ) as well in the anterior occipito-temporal sulcus
OTS) and anterior collateral sulcus (COS) (regions that are usually “in-
isible ” in fMRI due to large magnetic susceptibility artefacts but show
arge face-selective responses in electrophysiology ( Hagen et al., 2020 ;
onas et al., 2016 )) may also generate radial dipoles that would all con-
ribute to the stronger right lateralization found in EEG than in MEG
n the present study. This combination of contributions from these pre-
ominantly radial and tangential (e.g., lateral fusiform gyrus) sources
urther justifies the combination of EEG and MEG for source estimation.

Our source estimates also only showed a numerical but non-
ignificant right-lateralization of face categorization responses. To
ur knowledge, MEG studies of face processing have only rarely re-
orted a RH advantage in absolute responses to face stimuli (e.g.
ee et al. 2005 and Tiedt et al. 2013 in male subjects only) let
lone for face-selective responses (i.e., no RH advantage in e.g.,
effke et al. 2007 , Furey et al. 2006 , Halgren et al. 2000 , Linkenkaer-
ansen et al. 1998 and Liu et al. 2010 , although see the recent study of
an et al. 2020 ). Our source estimation results also produced more bi-
ateral, but numerically right-lateralized, face categorization responses.
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Fig. 7. Time domain responses to face onsets in the fast periodic sequence. Note that the 0.0 s time point indicates the onset of the sinusoidal contrast modulation, 

with 100% contrast reached at 83.3 ms at 6 Hz (fifth frame at 60 Hz). 

Evoked responses are shown with notch filtering at the base frequency and its harmonics (i.e., isolating face-selective responses) and for different sensor types. 

Topographies are shown for selected latencies (indicated by black lines). 

All sensor types show reliable evoked responses in posterior sensors. 

GFP: Global Field Power. 

10 
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Fig. 8. Grand-averaged L2-MNE source estimates for face-selective responses in the time domain. 

Source distributions are shown on an inflated cortical surface in caudal (left column) and ventral or right lateral (right column) view, for three different latencies 

(rows). 
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nterestingly, a previous study comparing brain activation to faces and
crambled faces found right-lateralized difference activation for source
stimates based on EEG, but more bilateral activation for the combina-
ion of EEG and MEG ( Henson et al., 2009 ). It is noteworthy that our
ource estimates for the base frequency did reveal right-lateralized brain
esponses, in line with the sensor space data in all sensor types. Thus,
ur analysis was sensitive to lateralization effects in source space. 

The FPVS paradigm provides an efficient tool to study the neural
ources of face-selective responses in more detail in the future. Due to
he short acquisition time and low task demands, it can be an efficient
ocalizer for face-selective responses especially in clinical participant
opulations. Our source estimation results also provide the basis for fu-
ure analyses on brain connectivity ( Anzellotti and Coutanche, 2018 ;
asti et al., 2020 ; Palva and Palva, 2012 ) or brain-area-specific decoding
a

11 
 Kietzmann et al., 2019 ; King and Dehaene, 2014 ; Kriegeskorte, 2011 ;
tokes et al., 2015 ) of different stimulus types. 
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