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Abstract 

Two simulations were conducted using a replication of 
PMSP96 (Plaut, McClelland, Seidenberg, & Patterson, 1996, 
Simulation 4). The first simulation demonstrated that this 
implementation of  PMSP96,  was able to reproduce the 
standard effects of reading, and that when damaged by 
removal of the semantic input to phonology it produced the 
kind of frequency/consistency interactions and regularisation 
errors typical of surface dyslexia. The second simulation 
explored the effect of phonological damage followed by a 
period of recovery. This produced large lexicality effects 
characteristic of phonological dyslexia. This is the first time 
that symptoms of both of these reading disorders have been 
demonstrated by the same implementation of the triangle 
reading model. 

Introduction 
Phonological dyslexia is a disorder of reading characterised 
by impairment in nonword reading ability. The 
characteristics of phonological dyslexia are closely  related 
to those of deep dyslexia with the important distinction  that 
phonological dyslexics do not make any of the semantic 
errors that are diagnostic of deep dyslexia. The first case of 
phonological dyslexia was reported by Beauvois and 
Derouesné (1979) who coined the term. Since then there 
have been numerous reports of individual cases as well as 
two case series (Berndt, Haendiges, Mitchum, & Wayland, 
1996; Crisp & Lambon Ralph, in press). Analysis of these 
shows that there is a wide continuum of reading 
performance both for words and nonwords. At one end there 
are patients whose word reading is near ceiling and have 
only slightly impaired nonword reading; then there are 
patients with relatively ‘pure’  deficits whose word reading 
is still reasonably preserved, but whose nonword reading is 
almost at floor. Finally, there are the very severe cases 
whose nonword reading is abolished, but who also have 
poor reading of words.  

At first it was thought that the only factor that was 
important for reading performance in phonological dyslexia 
was lexicality. More recently, it has been shown that 
imageability/concreteness also affects word reading. 
Traditionally this variable has been associated with reading 
performance in deep dyslexics and most of the early reports 
do not associate imageability effects with phonological 
dyslexia. The first suggestion of this possible association 
comes from patient LB (Derouesné & Beauvois, 1985);  
however, it was not until the most recent case series study 
(Crisp & Lambon Ralph, in press) that it became clear that 
the occurrence of imageability effects in phonological 

dyslexia was widespread. In that study all except one of the 
12 patients (the mildest) were significantly more accurate 
when reading high imageability words. This gradual 
appearance of ‘deep dyslexic’  symptoms in cases of 
phonological dyslexia is part of a trend in which deep and 
phonological dyslexia are viewed as points on a continuum 
rather than as separate disorders (Friedman, 1996).  

Much of the previous work on models of reading has 
focussed on modelling surface rather than phonological 
dyslexia (Patterson, Seidenberg, & McClelland, 1989; Plaut 
et al., 1996); as yet there has been no satisfactory account of 
acquired phonological dyslexia within a connectionist 
framework. Harm and Seidenberg (1999) have explored the 
phenomenon of developmental phonological dyslexia with 
some success. They trained a single route network in two 
stages. First they trained the phonological portion of the 
network so that it learned the phonological representations 
of the words in the training corpus. They then trained the 
network to read, interleaving this new training with 
continued exposure to phonological only trials from the first 
phase of training. To model developmental phonological 
dyslexia they damaged the phonological portion of the 
network after the first stage of training. Although they 
successfully modelled varying severities of developmental 
dyslexia, none of their simulations come near to producing 
the very large lexicality effects found in cases of pure 
acquired phonological dyslexia. In fact there are no reported 
PDP models of acquired phonological dyslexia. In view of 
the inevitable absence of null results in the literature it is 
difficult to come to any definite conclusion as to why this 
should be, but we suspect that a key factor is the difficulty 
in obtaining large lexicality effects. Attempting to model 
large performance dissociations as a result of damage to a 
PDP network can be a very frustrating task. Damage to 
these networks tends to affect all processing tasks with a 
similar severity. This was certainly the case with early 
attempts to model surface dyslexia (Patterson et al., 1989): 
PMSP96 was successful in modelling surface dyslexia, but 
it achieved this by circumventing the problem. It modelled 
semantic contributions by applying an external input to 
‘push’  the output of the phonological units towards their 
targets. Semantic damage could then be modelled by the 
removal of this input.   

This paper adopts an alternative approach to modelling 
the effects of brain damage (Welbourne & Lambon Ralph, 
2005). Under this approach human performance after 
damage is assumed to be the result of a combination of 
damage and plasticity-related recovery. The period of 
recovery (corresponding to the period of spontaneous 
recovery in patients) is critical because it allows the brain to 
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re-optimise its remaining connections thus allowing the 
model to make the best use of what resources it has left.  
The theoretical position behind that paper is held in 
common with this study and revolves around the proposition 
that recovery after brain damage may be, at least in part, 
attributable to synaptic weight changes. If the human brain’s 
ability to perform accurately depends on the pattern of 
synaptic weights then it seems reasonable to assume that the 
removal of a proportion of those weights will not leave the 
remaining synapses optimally configured to perform the 
task.  Further, provided that there exists some optimisation 
process by which the synaptic weights can change (learning) 
then it seems inevitable that some of the recovery that we 
observe in patients after brain damage must be attributable 
to synaptic change.  This kind of mature synaptic plasticity 
has been studied mostly in the context of cortical sensory 
maps (for a review see Buonomano & Merzenich, 1998) and 
it is clear that these maps are capable of undergoing 
extensive modification presumably as a result of some 
learning process operating at the synaptic level. 

It seems possible that application of this new 
methodology to a suitable model might result in a closer 
match to the symptoms of phonological dyslexia than has 
hitherto been achieved. We selected Simulation 4 from 
Plaut, McClelland, Seidenberg and Patterson (1996) as the 
most appropriate for our purposes. This model consists of a 
feedforward network trained on a set of monosyllabic words 
with the training weighted by the square root of word 
frequency. Input to the phonological units came partly from 
this network and partly from an external ‘semantic’  
contribution. In their paper, Plaut et al. demonstrated that 
removal of this semantic contribution resulted in typical 
surface dyslexic reading patterns. We speculated that 
damage to the phonological side of the network followed by 
a suitable period of retraining might result in typical 
phonological patterns of impairment.  

Simulation 1 
The architecture, training and representations used in this 
simulation were modelled on those used by Plaut et al. 
(Simulation 4, 1996)1. Each of these key features is 
summarized below. Figure 1 shows the architecture of the 
network that was used throughout this set of simulations. 
There were three sets of units: 105 grapheme units; 100 
hidden units and 61 phoneme units. The input layer was 
connected to the hidden layer with a probability of 40% and 
the hidden layer was connected to the output layer with a 
probability of 80%. This sparse connection is a modification 
from the original simulation where every layer was fully 
connected to the next layer up. The purpose of this 
modification was to reduce the competence of the 
phonological part of the model so that word reading would 
require a division of labour between semantic and 
phonological systems. Plaut et al. achieved the same result 
by using a very high value of weight decay in the 
phonological part of the model. This method was chosen in 
preference because it is a more realistic description of 
                                                        
1 We are grateful to David Plaut for sharing his training patterns 
with us. 

synaptic connectivity in the human brain where connection 
density is relatively low and dependent on distance (Plaut, 
2002; Young, Scannell, & Burns, 1995).  

The activity level of each unit was set to vary between 0 
and 1 as a nonlinear (logistic) function of the unit’s total 
input. The initial weights on the connections were set to 
random values between –0.1 and +0.1. The network was 
then trained using the standard backpropagation learning 
algorithm with momentum enabled only if the gradient of 
the error slope was less than 1. Cross entropy was used as 
the error function as in PMSP96.  The learning rate for the 
network was set to 0.05 and the momentum was 0.9.   

 
 
 
 
 
 
 

 
 

 
 
 

 
 

Figure 1: Network Architecture. 

Orthographic and Phonological Representations 
The network used the same representations as PMSP96. 
These representations divide each word into three parts 
(onset, vowel and coda) and then use specific units to code 
for particular graphemes or phonemes occurring within each 
part.  
 
Imageability Ratings Imageability ratings for words in the 
corpus were obtained from the MRC Psycholinguistic 
database and from Cortese and Fugett (2004). Between 
them these sources provided ratings for 2719 of the 2998 
words in the corpus (1529 words had ratings from both 
sources). For the purposes of this study both these ratings 
were converted to z scores and averaged if necessary. 
Words without an imageability rating were given an average 
imageability value (z score =0). 
 
Semantic Input Semantic input to the phonological units 
was provided such that it tended to push the phonological 
units towards the correct activations. Throughout training 
the strength of this contribution was gradually increased to 
mimic the effect of learning. The strength of this input at 
any given developmental stage was modulated by word 
frequency and imageability according to the following 
formula:- 
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Equation 1. Formula for calculating the semantic input to 

phonological units. 
 

Frequency was taken from Kuçera and Francis (1967) and 
imageability z score was calculated as above. (The constants 
in this formula were selected to provide a sensible 
distribution across the frequency and imageability values in 
the corpus with more of the variation originating in 
imageability.) Over the course of development the total 
semantic input was modulated by an epoch dependent 
modulation factor that varied from 0.6 to 4.8 in steps of 0.6 
where a step occurred after every 200 epochs.  

 
In the case of the nonwords Plaut et al. did not provide 

any semantic contribution. This may not have been the 
correct choice for the following reason: in the brain the 
connections between O and S (either direct O� S or indirect 
O� P� S) cannot be selectively turned off for nonwords. 
Hence nonwords will generate some kind of activation 
across the semantic units which will, in turn, contribute to 
the activation of phonological units. This nonword semantic 
activation will not correspond to any known semantic 
targets (except in the case of lexicalization errors); rather it 
will represent some kind of average semantic activation for 
all the visually similar words. This will result in a 
contribution from semantics to phonology that is effectively 
random noise. Accordingly, for nonword reading, semantic 
input was randomly added to the phonological units where 
the input for each unit varied between -0.5 and +0.5 
modulated by the same modulation function as for the real 
words. 

Training Procedure 
The network was trained using full batches with the same 
corpus of 2998 monosyllabic words used in PMSP96. The 
root frequency (Kuçera & Francis, 1967) of each word was 
used to scale the error derivatives for the purposes of 
backpropagation. This has the same effect as using 
frequency to determine the probability of a word being 
presented for training; however, it has the considerable 
advantage that every word can still be presented once every 
epoch thus considerably compressing the required training 
time (See Plaut et al, 1996 for a fuller discussion of this 
issue).   To eliminate the possibility that the results might be 
a consequence of one particular set of initial weights, the 
network was trained ten times; each time using a different 
random set of weights as the starting point. These ten 
trained networks then formed the starting point for further 
investigations.   

Testing Procedure  
Seven sets of test stimuli were used to evaluate the 
network’s performance: high frequency regular; high 
frequency irregular; low frequency regular; low frequency 

irregular; regular nonwords; high imageability words and 
low imageability words.  

The regular and irregular words were taken from Taraban 
and McClelland (1987) and were matched across groups for 
frequency. The regular nonwords were taken from Glushko 
(1979) and were created by changing the onset of an 
existing regular word. These stimuli are the same as those 
used in PMSP96 so that it is possible to make a direct 
comparison of results.  

The high and low imageability word sets were constructed 
for the purposes of this simulation. Low imageability words 
(imageability rating 200-400) were selected from the 
training corpus and matched, pairwise, on frequency with 
high imageability words (500-700) also selected from the 
corpus. 

In addition to the performance on the seven sets of test 
stimuli, the percentage of regularisation errors made by the 
network on the two irregular stimuli sets was also recorded.   

Initial Training 
By the end of training the network correctly pronounced all 
of the words in its corpus including all of the homographs. 
This is slightly better than the performance achieved by 
PMSP96, which was 99.7% accurate in word reading. For 
nonword reading the model was correctly reading 93.02% of 
the regular nonwords. This is not as good as the 96.5% 
achieved by PMSP96, but it is nearer to human performance 
which averages 93.8% (Glushko, 1979). 

It is important to verify that this model could replicate the 
standard frequency/consistency interaction found in the 
naming latencies of normal human populations (e.g. 
Seidenberg, 1985; Seidenberg, Waters, Barnes, & 
Tanenhaus, 1984). Error scores from the network at epoch 
2000 were submitted to a 2 x 2 ANOVA where frequency 
and consistency were treated as between group variables. 
This confirmed that there was indeed a significant 
frequency/consistency interaction ( F(1,1916) = 238.1, p < 
0.001). In addition, there were significant main effects of 
both frequency (F(1,1916)=306.4, p<.001 and consistency 
(F(1,1916)=521.9, p<.001). The nature of the interaction 
was for frequency to be almost completely modulated by 
consistency. For irregular words low frequencies resulted in 
a much higher error scores, but for regular words there was 
almost no effect of frequency. This is consistent with the 
standard effect found in human reading latencies and with 
the results found for PMSP96. 

In addition to standard effects of consistency and 
frequency one might also expect to see an effect of 
imageability (Strain, Patterson, & Seidenberg, 1995) with 
high imageability items having lower error scores than low 
imageability ones. To test this, error scores from the high 
and low imageability word sets were compared. The mean 
error score for high imageability items was 0.0082 
(SD=0.013) whilst the mean error score for the low 
imageability items was 0.0223 (SD=0.0416). Submitting 
these scores to a t test revealed that there was, as predicted, 
a significant difference (t=-7.08, df=570, p<0.001). 
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Sur face Dyslexia – Replication of PMSP  
Before investigating the possibility that this model can 
simulate the symptoms of phonological dyslexia it is 
important to verify that like PMSP96 it is capable of 
replicating the symptoms of surface dyslexia. Surface 
dyslexia is characterised by poor reading of low frequency 
exception words, coupled with accurate reading of  
nonwords. Errors made in reading irregular words tend to be 
regularisations or LARCs (Patterson, Suzuki, Wydell, &  
Sasanuma, 1995); for example reading PINT to rhyme with 
MINT. To mimic the effect of semantic damage we 
gradually reduced the strength of the semantic contribution 
whilst simultaneously adding random noise to it. This was 
achieved by decreasing the strength of the modulation factor 
from 4.8 to 0 in ten steps of 0.48 while simultaneously 
adding increasing amounts of Gaussian noise with a 
standard deviation increasing in ten steps of 0.75.   

 Figure 2 shows the results of this simulation. For clarity 
the regular high frequency, high imageability and low 
imageability word sets have been omitted – performance on 
these word sets is very similar to that for low frequency 
regular words. Low frequency irregular words are the most 
affected by this manipulation with performance dropping to 
53% for the worst damage. At this point performance on 
high frequency irregular words is reduced to 89%; 
regularisation errors constitute 79% of all errors made on 
irregular words; while accuracy rates on all other word sets 
fall between 95% and 98%. Note that for nonwords this 
represents a slight improvement on the undamaged 
performance. This pattern of results is consistent with that 
found in surface dyslexic patients and with the results of 
PMSP96 Simulation 4.  
    

Figure 2. Effect of removal of semantic input 

Simulation 2 – Phonological Damage 
The architecture, network dynamics and training 
environment used in this simulation were identical to that of 
Simulation 1. Starting from the same ten fully trained 
networks we explored the effect of damage to the 
phonological portion of the network followed by a period of 

retraining. Phonological damage was simulated by lesioning 
the links between input and hidden layers whilst 
simultaneously adding noise to the output of the hidden 
layer. Three levels of damage severity were tested (15%, 
noise SD=.15; 30%, noise SD=.3 and 70%, noise SD=0.7). 
After damage the network was allowed to recover for 200 
epochs by re-exposing it to the original learning 
environment. Figure 3 shows the results of this investigation 
for the three levels of damage severity. At the most severe 
level nonword reading is abolished while word reading 
accuracy varies between 20% and 40% depending on the 
stimuli set. The high imageability and regular high 
frequency words are read with the highest accuracy while 
the low imageability and irregular word sets are read with 
the least accuracy. This pattern of results is what one might 
expect to see in a rather severe case of phonological 
dyslexia. The only possible criticism would be that there 
seems to be an effect of consistency as well as one of 
imageability; an issue that will be addressed in more detail 
in the discussion.  

For the medium and mild levels of damage the pattern of 
performance for words is very similar to that for severe 
damage except that it is centred around progressively higher 
mean scores: in the case of 30% damage scores range from 
57% to 85%, while for milder 15% damage they range from 
83% to 97%. In all cases irregular and low imageability 
words are read less accurately than regular and high 
imageability words. Nonword reading is seriously impaired 
for all levels of damage with overall level of nonword 
reading accuracy decreasing with increasing damage 
severity. However, even at mild levels of damage nonword 
reading accuracy is still only 47%.  

To confirm the significance of the apparent effects of 
lexicality, imageability and consistency we submitted the 
results to a series of t tests: lexicality was tested by 
comparing performance on low frequency regular words 
with performance on regular nonwords; imageability was 
tested by comparing performance on the high and low 
imageability word sets; consistency was tested by 
comparing the low frequency regular and irregular word 
sets. All of these comparisons demonstrated highly 
significant differences (all p’s <0.001).  
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Figure 3. Performance after phonological damage and 

recovery 

Discussion 
Two simulations were conducted using a network 
architecture similar to PMSP96 (Simulation 4). The first 
simulation demonstrated that our implementation performs 
similarly to PMSP96, in that it can reproduce the cardinal 
features of normal reading, as well as the symptoms of 
surface dyslexia. The second simulation explored the 
possibility that damage to the phonological portion of the 
model, followed by a period of recovery would lead to 
performance resembling that found in phonological 
dyslexia. This simulation demonstrated that a full range of 
lexicality effects could be modelled; coupled with the 
imageability effects that are characteristic of phonological 
dyslexia.  This is the first time that such large lexicality 
effects have been modelled in a network which also has the 
capacity to learn. Moreover, it is the first time that 
simulations of surface and phonological dyslexia have been 
produced from the same connectionist architecture.  

One slightly unexpected aspect of these results is the 
persistence of a consistency effect following phonological 
damage. This is not traditionally associated with 
phonological dyslexia. However, although it is not often 
reported, phonological dyslexics do often exhibit 
consistency effects. A re-analysis of data from Berndt et al2 
(1996)  reveals that 9 out of 10 of the patients in the series 
showed more accurate reading of regular than of irregular 
words with the performance difference ranging from 2% to 
20%. When data from all of the patients are submitted to 
statistical analysis these differences are shown to be 
significant (t=2.32, df=9, p=0.023, one tailed). Data from 
the only other case series of phonological dyslexics (Crisp 
& Lambon Ralph, in press) is even more emphatic; 10 out 
of 12 patients showed a superiority for regular words  
varying from 5% to 33% and the group as a whole showed a 

                                                        
2 We are grateful to Rita Berndt for allowing us access to some of 
the data that formed the basis of the paper. 

very significant consistency effect (t=4.41, df=11, p<0.001, 
one tailed).  The mean size of the consistency effect for the 
two sets of patients (including those who did not exhibit a 
consistency effect) was 5% for the Berndt et al. set and 14% 
for the Crisp and Lambon Ralph set. This compares with a 
mean consistency effect of 16% for the network (averaged 
across all damage severities). In the light of this it seems 
reasonable to suggest that this simulation has captured a 
hitherto unremarked feature of phonological dyslexia. 

These results pose two important questions: (1) What are 
the critical components in these simulations that are 
essential to successfully modelling phonological dyslexia? 
(2)  How do these results mesh with those reported by 
Welbourne and Lambon Ralph (2005)?  

Two features of these simulations seem likely to have 
significantly contributed to their success in modelling 
phonological dyslexia. Firstly, the fact that the phonological 
damage was generalised in nature, affecting both the ability 
of the network to map from orthography to phonology and 
the integrity of its phonological representations. This was 
achieved by combining damage to the connections in the 
O� P pathway with noise added to the output of the 
phonological hidden units.  Without the addition of noise it 
is probable that the network would have been able to 
recover by finding solutions that relied more on the 
regularities in the training set; resulting in reduced lexicality 
effects and an increased influence of consistency. The idea 
that phonological dyslexia arises from generalized 
phonological damage is consistent with the primary systems 
hypothesis (Patterson & Lambon Ralph, 1999), which 
assumes that reading is subserved by the more general pre-
existing language systems and that the acquired dyslexias 
arise from generalized damage to one of these systems. 
Indeed, the current model could be regarded as a first step 
towards an implementation of the primary systems 
hypothesis. Of course, a full implementation would require 
a model that was able to perform additional linguistic tasks 
such as speech, comprehension and repetition.  

The second key factor in this simulation is the inclusion 
of a period of recovery after damage.  Welbourne and 
Lambon Ralph (2005) found that including a period of 
recovery was helpful when modelling surface dyslexia 
because it magnified the effect of small pre-existing 
processing biases into large performance dissociations. 
Exactly the same effect is produced in these simulations, but 
this time the biases are towards lexicality and imageability 
effects rather than a frequency/consistency interaction.  

It is important to consider how the results of this 
simulation mesh with the results reported by Welbourne and 
Lambon Ralph (2005). In that simulation, damage to an 
isolated phonological network resulted in a surface dyslexic 
performance; here, on the other hand, surface dyslexia arises 
from damage to the semantic portion of the network whilst 
damage to the phonological portion produced the symptoms 
of phonological dyslexia. At first glance this seems 
somewhat inconsistent; how is it that surface dyslexia can 
arise from two different damage loci? In reality, there is no 
inconsistency; in both cases the endpoint is the same. 
Surface dyslexia occurs where the phonological system has 
insufficient computational resources to successfully process 



 

all of the words in its corpus and has no available support 
from semantics. Welbourne and Lambon Ralph (2005) 
achieved this situation by damaging a phonological system 
that was initially over competent in that it could read 
without any support from semantics. In the current 
simulation the same situation was achieved, more 
realistically, by removing semantics from a network where 
reading was supported by a division of labour between 
phonology and semantics. Only in this latter situation, 
where there is the potential for a division of labour, can 
damage to the phonological system result in phonological 
dyslexia. 

This study represents a considerable step forward in that it 
is the first time that an implementation of the triangle model 
has been able to produce both the frequency/consistency 
interactions typical of surface dyslexia and the lexicality/ 
imageability effects associated with phonological dyslexia. 
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