12 research outputs found
Decoding the Fucose Migration Product during Mass-Spectrometric analysis of Blood Group Epitopes
Fucose is a signaling carbohydrate that is attached at the end of glycan processing. It is involved in a range of processes, such as the selectin-dependent leukocyte adhesion or pathogen-receptor interactions. Mass-spectrometric techniques, which are commonly used to determine the structure of glycans, frequently show fucose-containing chimeric fragments that obfuscate the analysis. The rearrangement leading to these fragments—often referred to as fucose migration—has been known for more than 25 years, but the chemical identity of the rearrangement product remains unclear. In this work, we combine ion-mobility spectrometry, radical-directed dissociation mass spectrometry, cryogenic IR spectroscopy of ions, and density-functional theory calculations to deduce the product of the rearrangement in the model trisaccharides Lewis x and blood group H2. The structural search yields the fucose moiety attached to the galactose with an α(1→6) glycosidic bond as the most likely product
Recommended from our members
Spontaneous Isomerization of Long-Lived Proteins Provides a Molecular Mechanism for the Lysosomal Failure Observed in Alzheimer's Disease.
Proteinaceous aggregation is a well-known observable in Alzheimer's disease (AD), but failure and storage of lysosomal bodies within neurons is equally ubiquitous and actually precedes bulk accumulation of extracellular amyloid plaque. In fact, AD shares many similarities with certain lysosomal storage disorders though establishing a biochemical connection has proven difficult. Herein, we demonstrate that isomerization and epimerization, which are spontaneous chemical modifications that occur in long-lived proteins, prevent digestion by the proteases in the lysosome (namely, the cathepsins). For example, isomerization of aspartic acid into l-isoAsp prevents digestion of the N-terminal portion of Aβ by cathepsin L, one of the most aggressive lysosomal proteases. Similar results were obtained after examination of various target peptides with a full series of cathepsins, including endo-, amino-, and carboxy-peptidases. In all cases peptide fragments too long for transporter recognition or release from the lysosome persisted after treatment, providing a mechanism for eventual lysosomal storage and bridging the gap between AD and lysosomal storage disorders. Additional experiments with microglial cells confirmed that isomerization disrupts proteolysis in active lysosomes. These results are easily rationalized in terms of protease active sites, which are engineered to precisely orient the peptide backbone and cannot accommodate the backbone shift caused by isoaspartic acid or side chain dislocation resulting from epimerization. Although Aβ is known to be isomerized and epimerized in plaques present in AD brains, we further establish that the rates of modification for aspartic acid in positions 1 and 7 are fast and could accrue prior to plaque formation. Spontaneous chemistry can therefore provide modified substrates capable of inducing gradual lysosomal failure, which may play an important role in the cascade of events leading to the disrupted proteostasis, amyloid formation, and tauopathies associated with AD
Field Measurements of Terrestrial and Martian Dust Devils
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
Recommended from our members
Proteolysis of Amyloid β by Lysosomal Enzymes as a Function of Fibril Morphology.
Aggregation of amyloid-β (Aβ) into extracellular plaques is a well-known hallmark of Alzheimer's disease (AD). Similarly, autophagic vacuoles, autophagosomes, and other residual bodies within dystrophic neurites, though more difficult to detect, are characteristic features of AD. To explore the potential intersection between these observations, we conducted experiments to assess whether Aβ fibril formation disrupts proteolysis by lysosomal enzymes. Fibrils constituted by either Aβ 1-40 or Aβ 1-42 were grown under both neutral and acidic pH. The extent of proteolysis by individual cathepsins (L, D, B, and H) was monitored by both thioflavin T fluorescence and liquid chromatography combined with mass spectrometry. The results show that all Aβ fibril morphologies are resistant to cathepsin digestion, with significant amounts of the undigested material remaining for samples grown in either neutral or acidic pH. Further analysis revealed that the neutral-grown fibrils are proteolytically resistant throughout the sequence, while the acid-grown fibrils prevented digestion primarily in the C-terminal portion of the sequence. Fibrils grown from Aβ 1-42 are generally more resistant to degradation compared to Aβ 1-40. Overall, the results indicate that Aβ fibrils formed in the neutral pH environments found in intracellular or extracellular spaces may pose the greatest difficulty for complete digestion by the lysosome, particularly when the fibrils are comprised of Aβ 1-42
Recommended from our members
PIMT-Mediated Labeling of l‑Isoaspartic Acid with Tris Facilitates Identification of Isomerization Sites in Long-Lived Proteins
Isomerization of individual residues in long-lived proteins (LLPs) is a subject of growing interest in connection with many age-related human diseases. When isomerization occurs in LLPs, it can lead to deleterious changes in protein structure, function, and proteolytic degradation. Herein, we present a novel labeling technique for rapid identification of l-isoAsp using the enzyme protein l-isoaspartyl methyltransferase (PIMT) and Tris. The succinimide intermediate formed during reaction of l-isoAsp-containing peptides with PIMT and S-adenosyl methionine (SAM) is reactive with Tris base and results in a Tris-modified aspartic acid residue with a mass shift of +103 Da. Tris-modified aspartic acid exhibits prominent and repeated neutral loss of water when subjected to collisional activation. In addition, another dissociation pathway regenerates the original peptide following loss of a characteristic mass shift. Furthermore, it is demonstrated that Tris modification can be used to identify sites of isomerization in LLPs from biological samples such as the lens of the eye. This approach simplifies identification by labeling isomerization sites with a tag that causes a mass shift and provides characteristic loss during collisional activation
A two-trick pony: lysosomal protease cathepsin B possesses surprising ligase activity.
Cathepsin B is an important protease within the lysosome, where it helps recycle proteins to maintain proteostasis. It is also known to degrade proteins elsewhere but has no other known functionality. However, by carefully monitoring peptide digestion with liquid chromatography and mass spectrometry, we observed the synthesis of novel peptides during cathepsin B incubations. This ligation activity was explored further with a variety of peptide substrates to establish mechanistic details and was found to operate through a two-step mechanism with proteolysis and ligation occurring separately. Further explorations using varied sequences indicated increased affinity for some substrates, though all were found to ligate to some extent. Finally, experiments with a proteolytically inactive form of the enzyme yielded no ligation, indicating that the ligation reaction occurs in the same active site but in the reverse direction of proteolysis. These results clearly establish that in its native form cathepsin B can act as both a protease and ligase, although protease action eventually dominates over longer periods of time
Internal Fragments Generated from Different Top-Down Mass Spectrometry Fragmentation Methods Extend Protein Sequence Coverage
Top-down mass spectrometry (TD-MS) of intact proteins results in fragment ions that can be correlated to the protein primary sequence. Fragments generated can either be terminal fragments that contain the N- or C- terminus, or internal fragments that contain neither termini. Traditionally in TD-MS experiments, the generation of internal fragments have been avoided because of ambiguity in assigning these fragments. Here, we demonstrate that in TD-MS experiments, internal fragments can be formed and assigned in collision-based, electron-based, and photon-based fragmentation methods and are rich with sequence information, allowing for a greater extent of the primary protein sequence to be explained. For the three test proteins cytochrome c, myoglobin, and carbonic anhydrase II, the inclusion of internal fragments in the analysis resulted in approximately 15-20% more sequence coverage, with no less than 85% sequence coverage obtained. By combining terminal fragment and internal fragment assignments, on average the sequence information obtained can be between 1-2 amino acids, i.e., a cleavage site is observed between 2 amino acids, which results in near complete protein sequence coverage. Hence, by including both terminal and internal fragment assignments in TD-MS analysis, deep protein sequence analysis, allowing for the localization of modification sites more reliably, can be possible