116 research outputs found

    Solar array thermal snap and the characteristics of its effect on UARS

    Get PDF
    The single solar array on the Upper Atmosphere Research Satellite (UARS) is subjected to a thermal distortion when the spacecraft enters and exits the Earth's shadow. The distortion results in a torque that alters the spacecraft attitude. Due to the sudden nature of the attitude discontinuity, the effect has been termed 'thermal snap'. Thermal snap has also been experienced by Landsats 4 and 5. Analyses by the spacecraft builder addressed the impact of the resultant torque on the onboard control system. This paper discusses the results of comparisons between the predicted effects of thermal snap on UARS and actual attitude solutions from UARS telemetry data. In addition, this paper describes the characteristics of the thermal snap on UARS in terms of maximum displacement, solar beta angle, and solar array drive angle. Comparisons are made between the actual times of thermal snaps and the predicted spacecraft sunrise and sunset times. The effects of the UARS thermal snap are summarized and a general comment is made relating possible effects of thermal snap on other satellites. Also, an analysis of UARS attitude solutions that span periods of thermal snap was performed to determine whether the gyro sampling time of 1/8 second is sufficient to properly model the resulting spacecraft attitude without compromising the accuracy requirements. The results of this analysis are discussed

    Gold Nanoparticle Colorants as Traditional Ceramic Glaze Alternatives

    Get PDF
    Historically, Roman stained glass has been a standard for high‐temperature color stability since biblical times but was not properly characterized as emission from nanoparticle plasmon resonance until the 1990s. The methods under which it was created have been lost, but some efforts have recently been made to recreate these properties using gold nanoparticle inks on glassy surfaces. This body of work employs gold nanoparticle systems ranging from 0.015% to 0.100% (wt/wt), suspended in a clear glaze body. The glazes are fired with traditional ceramic methods—in both gas reduction and electric oxidation kilns—in which nanoparticles are retained and can be imaged via TEM. Various colors intensities are reported in addition to changes in nanoparticle size after application and firing. The nanoparticle glazes are compared to traditional red glazes, highlighting the significantly lower metal loading required (5%‐10% for traditional glazes vs 0.100% for gold (wt/wt)), therein. Finally, proof of concept is provided with a functional gold nanoparticle mug, fired in reduction, that costs roughly 0.98$ USD in gold used

    A Conditional Yeast E1 Mutant Blocks the Ubiquitin–Proteasome Pathway and Reveals a Role for Ubiquitin Conjugates in Targeting Rad23 to the Proteasome

    Get PDF
    E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin–proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo
    corecore